May Christine V. Malicdan
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by May Christine V. Malicdan.
Nature Medicine | 2009
May Christine V. Malicdan; S. Noguchi; Yukiko K. Hayashi; Ikuya Nonaka; Ichizo Nishino
Distal myopathy with rimmed vacuoles (DMRV)–hereditary inclusion body myopathy (hIBM) is an adult-onset, moderately progressive autosomal recessive myopathy; eventually, affected individuals become wheelchair bound. It is characterized clinically by skeletal muscle atrophy and weakness, and pathologically by rimmed vacuoles, which are actually accumulations of autophagic vacuoles, scattered angular fibers and intracellular accumulation of amyloid and other proteins. To date, no therapy is available for this debilitating myopathy, primarily because the disease pathomechanism has been enigmatic. It is known that the disease gene underlying DMRV-hIBM is GNE, encoding glucosamine (UDP-N-acetyl)-2-epimerase and N-acetylmannosamine kinase—two essential enzymes in sialic acid biosynthesis. It is still unclear, however, whether decreased sialic acid production causes muscle degeneration, as GNE has been proposed to have roles other than for sialic acid biosynthesis. By showing that muscle atrophy and weakness are completely prevented in a mouse model of DMRV-hIBM after treatment with sialic acid metabolites orally, we provide evidence that hyposialylation is indeed one of the key factors in the pathomechanism of DMRV-hIBM. These results support the notion that DMRV-hIBM can potentially be treated simply by giving sialic acids, a strategy that could be applied in clinical trials in the near future.
Neuromuscular Disorders | 2008
May Christine V. Malicdan; S. Noguchi; Ikuya Nonaka; Paul Saftig; Ichizo Nishino
Lysosomes are membrane-bound acidic organelles that contain hydrolases used for intracellular digestion of various macromolecules in a process generally referred to as autophagy. In normal skeletal and cardiac muscles, lysosomes usually appear morphologically unremarkable and thus are not readily visible on light microscopy. In distinct neuromuscular disorders, however, lysosomes have been shown to be structurally abnormal and functionally impaired, leading to the accumulation of autophagic vacuoles in myofibers. More specifically, there are myopathies in which buildup of these autophagic vacuoles seem to predominate the pathological picture. In such conditions, autophagy is considered not merely a secondary event, but a phenomenon that actually contributes to disease pathomechanism and/or progression. At present, there are two disorders in the muscle which are associated with primary defect in lysosomal proteins, namely Danon disease and Pompe disease. Other myopathies which have prominent autophagy in the skeletal muscle include X-linked myopathy with excessive autophagy (XMEA). In this review, these disorders are briefly characterized, and the role of autophagy in the context of the pathomechanism of these disorders is highlighted.
Nature Methods | 2015
Daniel Paull; Ana Sevilla; Hongyan Zhou; Aana Kim Hahn; Hesed Kim; Christopher Napolitano; Alexander M. Tsankov; Linshan Shang; Katie Krumholz; Premlatha Jagadeesan; Chris Woodard; Bruce Sun; Thierry Vilboux; Matthew Zimmer; Eliana Forero; Dorota N. Moroziewicz; Hector Martinez; May Christine V. Malicdan; Keren A. Weiss; Lauren B Vensand; Carmen R Dusenberry; Hannah Polus; Karla Therese L Sy; David J. Kahler; William A. Gahl; Susan Solomon; Stephen Chang; Alexander Meissner; Kevin Eggan; Scott Noggle
Induced pluripotent stem cells (iPSCs) are an essential tool for modeling how causal genetic variants impact cellular function in disease, as well as an emerging source of tissue for regenerative medicine. The preparation of somatic cells, their reprogramming and the subsequent verification of iPSC pluripotency are laborious, manual processes limiting the scale and reproducibility of this technology. Here we describe a modular, robotic platform for iPSC reprogramming enabling automated, high-throughput conversion of skin biopsies into iPSCs and differentiated cells with minimal manual intervention. We demonstrate that automated reprogramming and the pooled selection of polyclonal pluripotent cells results in high-quality, stable iPSCs. These lines display less line-to-line variation than either manually produced lines or lines produced through automation followed by single-colony subcloning. The robotic platform we describe will enable the application of iPSCs to population-scale biomedical problems including the study of complex genetic diseases and the development of personalized medicines.
Clinical Journal of The American Society of Nephrology | 2013
Galina Nesterova; May Christine V. Malicdan; Kaori Yasuda; Toshiyuki Sakaki; Thierry Vilboux; Carla Ciccone; Ronald L. Horst; Yan Huang; Gretchen Golas; Wendy J. Introne; Marjan Huizing; David Adams; Cornelius F. Boerkoel; Michael T. Collins; William A. Gahl
BACKGROUND AND OBJECTIVES Elevated serum vitamin D with hypercalciuria can result in nephrocalcinosis and nephrolithiasis. This study evaluated the cause of excess 1,25-dihydroxycholecalciferol (1α,25(OH)2D3) in the development of those disorders in two individuals. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Two patients with elevated vitamin D levels and nephrocalcinosis or nephrolithiasis were investigated at the National Institutes of Health (NIH) Clinical Center and the NIH Undiagnosed Diseases Program, by measuring calcium, phosphate, and vitamin D metabolites, and by performing CYP24A1 mutation analysis. RESULTS Both patients exhibited hypercalciuria, hypercalcemia, low parathyroid hormone, elevated vitamin D (1α,25(OH)2D3), normal 25-OHD3, decreased 24,25(OH)2D, and undetectable activity of 1,25(OH)2D-24-hydroxylase (CYP24A1), the enzyme that inactivates 1α,25(OH)2D3. Both patients had bi-allelic mutations in CYP24A1 leading to loss of function of this enzyme. On the basis of dbSNP data, the frequency of predicted deleterious bi-allelic CYP24A1 variants in the general population is estimated to be as high as 4%-20%. CONCLUSIONS The results of this study show that 1,25(OH)2D-24-hydroxylase deficiency due to bi-allelic mutations in CYP24A1 causes elevated serum vitamin D, hypercalciuria, nephrocalcinosis, and renal stones.
The New England Journal of Medicine | 2013
Thierry Vilboux; Atar Lev; May Christine V. Malicdan; Amos J. Simon; Päivi M Järvinen; Tomas Racek; Jacek Puchałka; Raman Sood; Blake Carrington; Kevin Bishop; James C. Mullikin; Marjan Huizing; Ben Zion Garty; Eran Eyal; Baruch Wolach; Ronit Gavrieli; Amos Toren; Michalle Soudack; Osama M. Atawneh; Tatiana Babushkin; Ginette Schiby; Andrew R. Cullinane; Camila Avivi; Sylvie Polak-Charcon; Iris Barshack; Ninette Amariglio; Gideon Rechavi; Jutte van der Werff ten Bosch; Yair Anikster; Christoph Klein
BACKGROUND Neutrophils are the predominant phagocytes that provide protection against bacterial and fungal infections. Genetically determined neutrophil disorders confer a predisposition to severe infections and reveal novel mechanisms that control vesicular trafficking, hematopoiesis, and innate immunity. METHODS We clinically evaluated seven children from five families who had neutropenia, neutrophil dysfunction, bone marrow fibrosis, and nephromegaly. To identify the causative gene, we performed homozygosity mapping using single-nucleotide polymorphism arrays, whole-exome sequencing, immunoblotting, immunofluorescence, electron microscopy, a real-time quantitative polymerase-chain-reaction assay, immunohistochemistry, flow cytometry, fibroblast motility assays, measurements of apoptosis, and zebrafish models. Correction experiments were performed by transfecting mutant fibroblasts with the nonmutated gene. RESULTS All seven affected children had homozygous mutations (Thr224Asn or Glu238Lys, depending on the childs ethnic origin) in VPS45, which encodes a protein that regulates membrane trafficking through the endosomal system. The level of VPS45 protein was reduced, as were the VPS45 binding partners rabenosyn-5 and syntaxin-16. The level of β1 integrin was reduced on the surface of VPS45-deficient neutrophils and fibroblasts. VPS45-deficient fibroblasts were characterized by impaired motility and increased apoptosis. A zebrafish model of vps45 deficiency showed a marked paucity of myeloperoxidase-positive cells (i.e., neutrophils). Transfection of patient cells with nonmutated VPS45 corrected the migration defect and decreased apoptosis. CONCLUSIONS Defective endosomal intracellular protein trafficking due to biallelic mutations in VPS45 underlies a new immunodeficiency syndrome involving impaired neutrophil function. (Funded by the National Human Genome Research Institute and others.).
Muscle & Nerve | 2009
Aya Ohkuma; S. Noguchi; Hideo Sugie; May Christine V. Malicdan; Tokiko Fukuda; Kunio Shimazu; Luis C. López; Michio Hirano; Yukiko K. Hayashi; Ikuya Nonaka; Ichizo Nishino
Causative genes have been identified only in four types of lipid storage myopathies (LSMs): SLC22A5 for primary carnitine deficiency (PCD); ETFA, ETFB, and ETFDH for multiple acyl‐coenzyme A dehydrogenation deficiency (MADD); PNPLA2 for neutral lipid storage disease with myopathy (NLSDM); and ABHD5 for neutral lipid storage disease with ichthyosis. However, the frequency of these LSMs has not been determined. We found mutations in only 9 of 37 LSM patients (24%): 3 in SLC22A5; 4 in MADD‐associated genes; and 2 in PNPLA2. This low frequency suggests the existence of other causative genes. Muscle coenzyme Q10 levels were normal or only mildly reduced in two MADD patients, indicating that ETFDH mutations may not always be associated with CoQ10 deficiency. The 2 patients with PNPLA2 mutations had progressive, non‐episodic muscle disease with rimmed vacuoles. This suggests there is a different pathomechanism from other LSMs. Muscle Nerve 39: 333–342, 2009
Brain Pathology | 2012
May Christine V. Malicdan; Ichizo Nishino
Lysosomal myopathies are hereditary myopathies characterized morphologically by the presence of autophagic vacuoles. In mammals, autophagy plays an important role for the turnover of cellular components, particularly in response to starvation or glucagons. In normal muscle, autolysosomes or autophagosomes are typically inconspicuous. In distinct neuromuscular disorders, however, lysosomes become structurally abnormal and functionally impaired, leading to the accumulation of autophagic vacuoles in myofibers. In some instances, the accumulation of autophagic vacuoles can be a prominent feature, implicating autophagy as a contributor to disease pathomechanism and/or progression. At present, there are two disorders in the muscle that are associated with a primary defect in lysosomal proteins, namely Pompe disease and Danon disease. This review will give a brief discussion on these disorders, highlighting the role of autophagy in disease progression.
PLOS ONE | 2008
Agnes Delaunay; Kenneth D. Bromberg; Yukiko K. Hayashi; Massimiliano Mirabella; Denise Burch; Brian Kirkwood; Carlo Serra; May Christine V. Malicdan; Andrew P. Mizisin; Roberta Morosetti; Aldobrando Broccolini; Ling T. Guo; Stephen N. Jones; Sergio A. Lira; Pier Lorenzo Puri; G. Diane Shelton; Ze'ev Ronai
Growing evidence supports the importance of ubiquitin ligases in the pathogenesis of muscular disorders, although underlying mechanisms remain largely elusive. Here we show that the expression of RNF5 (aka RMA1), an ER-anchored RING finger E3 ligase implicated in muscle organization and in recognition and processing of malfolded proteins, is elevated and mislocalized to cytoplasmic aggregates in biopsies from patients suffering from sporadic-Inclusion Body Myositis (sIBM). Consistent with these findings, an animal model for hereditary IBM (hIBM), but not their control littermates, revealed deregulated expression of RNF5. Further studies for the role of RNF5 in the pathogenesis of s-IBM and more generally in muscle physiology were performed using RNF5 transgenic and KO animals. Transgenic mice carrying inducible expression of RNF5, under control of β-actin or muscle specific promoter, exhibit an early onset of muscle wasting, muscle degeneration and extensive fiber regeneration. Prolonged expression of RNF5 in the muscle also results in the formation of fibers containing congophilic material, blue-rimmed vacuoles and inclusion bodies. These phenotypes were associated with altered expression and activity of ER chaperones, characteristic of myodegenerative diseases such as s-IBM. Conversely, muscle regeneration and induction of ER stress markers were delayed in RNF5 KO mice subjected to cardiotoxin treatment. While supporting a role for RNF5 Tg mice as model for s-IBM, our study also establishes the importance of RNF5 in muscle physiology and its deregulation in ER stress associated muscular disorders.
Autophagy | 2007
May Christine V. Malicdan; S. Noguchi; Ichizo Nishino
Distal myopathy with rimmed vacuoles (DMRV) or hereditary inclusion body myopathy (hIBM) is an autosomal recessive disorder clinically characterized by weakness that initially involves the distal muscles, although other muscles can be affected as well. Pathological hallmarks include the presence of rimmed vacuoles (RVs) and intracellular Congo red-positive depositions in vacuolated or non-vacuolated fibers. Mutations in the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) gene, which encodes the rate-limiting enzyme in sialic acid biosynthesis, are causative of DMRV/hIBM. Recently, we have generated a mouse model (Gne-/-hGNEV572L-Tg ) for this disease, and have shown that these mice exhibit hyposialylation and intracellular amyloid deposition before the characteristic RVs are detected, indicating that autophagy is a downstream phenomenon to hyposialylation and amyloid deposition in DMRV/hIBM. Addendum to: A Gne Knockout Mouse Expressing Human V572L Mutation Develops Features Similar to Distal Myopathy with Rimmed Vacuoles or Hereditary Inclusion Body Myopathy M.C. Malicdan, S. Noguchi, I. Nonaka, Y.K. Hayashi and I. Nishino Hum Mol Genet 2007; 16:115-28
Human Mutation | 2014
Frank Celeste; Thierry Vilboux; Carla Ciccone; John Karl de Dios; May Christine V. Malicdan; Petcharat Leoyklang; John C. McKew; William A. Gahl; Nuria Carrillo-Carrasco; Marjan Huizing
The GNE gene encodes the rate‐limiting, bifunctional enzyme of sialic acid biosynthesis, uridine diphosphate‐N‐acetylglucosamine 2‐epimerase/N‐acetylmannosamine kinase (GNE). Biallelic GNE mutations underlie GNE myopathy, an adult‐onset progressive myopathy. GNE myopathy‐associated GNE mutations are predominantly missense, resulting in reduced, but not absent, GNE enzyme activities. The exact pathomechanism of GNE myopathy remains unknown, but likely involves aberrant (muscle) sialylation. Here, we summarize 154 reported and novel GNE variants associated with GNE myopathy, including 122 missense, 11 nonsense, 14 insertion/deletions, and seven intronic variants. All variants were deposited in the online GNE variation database (http://www.dmd.nl/nmdb2/home.php?select_db=GNE). We report the predicted effects on protein function of all variants well as the predicted effects on epimerase and/or kinase enzymatic activities of selected variants. By analyzing exome sequence databases, we identified three frequently occurring, unreported GNE missense variants/polymorphisms, important for future sequence interpretations. Based on allele frequencies, we estimate the world‐wide prevalence of GNE myopathy to be ∼4–21/1,000,000. This previously unrecognized high prevalence confirms suspicions that many patients may escape diagnosis. Awareness among physicians for GNE myopathy is essential for the identification of new patients, which is required for better understanding of the disorders pathomechanism and for the success of ongoing treatment trials.