Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where May Sann Aung is active.

Publication


Featured researches published by May Sann Aung.


Scientific Reports | 2012

Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition

Hiroshi Masuda; Yasuhiro Ishimaru; May Sann Aung; Takanori Kobayashi; Yusuke Kakei; Michiko Takahashi; Kyoko Higuchi; Hiromi Nakanishi; Naoko K. Nishizawa

To address the problem of iron-deficiency anemia, one of the most prevalent human micronutrient deficiencies globally, iron-biofortified rice was produced using three transgenic approaches: by enhancing iron storage in grains via expression of the iron storage protein ferritin using endosperm-specific promoters, enhancing iron translocation through overproduction of the natural metal chelator nicotianamine, and enhancing iron flux into the endosperm by means of iron(II)-nicotianamine transporter OsYSL2 expression under the control of an endosperm-specific promoter and sucrose transporter promoter. Our results indicate that the iron concentration in greenhouse-grown T2 polished seeds was sixfold higher and that in paddy field-grown T3 polished seeds was 4.4-fold higher than that in non-transgenic seeds, with no defect in yield. Moreover, the transgenic seeds accumulated zinc up to 1.6-times in the field. Our results demonstrate that introduction of multiple iron homeostasis genes is more effective for iron biofortification than the single introduction of individual genes.


Plant Molecular Biology | 2011

OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil

Yuko Ogo; Reiko Nakanishi Itai; Takanori Kobayashi; May Sann Aung; Hiromi Nakanishi; Naoko K. Nishizawa

Iron (Fe) deficiency, a worldwide agricultural problem on calcareous soil with low Fe availability, is also a major human nutritional deficit. Plants induce Fe acquisition systems under conditions of low Fe availability. Previously, we reported that an Fe-deficiency-inducible basic helix-loop-helix (bHLH) transcription factor, OsIRO2, is responsible for regulation of the genes involved in Fe homeostasis in rice. Using promoter-GUS transformants, we showed that OsIRO2 is expressed throughout a plant’s lifetime in a spatially and temporally similar manner to the genes OsNAS1, OsNAS2 and TOM1, which is involved in Fe absorption and translocation. During germination, OsIRO2 expression was detected in embryos. OsIRO2 expression in vegetative tissues was restricted almost exclusively to vascular bundles of roots and leaves, and to the root exodermis under Fe-sufficient conditions, and expanded to all tissues of roots and leaves in response to Fe deficiency. OsIRO2 expression was also detected in flowers and developing seeds. Plants overexpressing OsIRO2 grew better, and OsIRO2-repressed plants showed poor growth compared to non-transformant rice after germination. OsIRO2 overexpression also resulted in improved tolerance to low Fe availability in calcareous soil. In addition to increased Fe content in shoots, the overexpression plants accumulated higher amounts of Fe in seeds than non-transformants when grown on calcareous soil. These results suggest that OsIRO2 is synchronously expressed with genes involved in Fe homeostasis, and performs a crucial function in regulation not only of Fe uptake from soil but also Fe transport during germination and Fe translocation to grain during seed maturation.


Plant Journal | 2012

The rice transcription factor IDEF1 directly binds to iron and other divalent metals for sensing cellular iron status

Takanori Kobayashi; Reiko Nakanishi Itai; May Sann Aung; Takeshi Senoura; Hiromi Nakanishi; Naoko K. Nishizawa

Iron is essential for most living organisms and its availability often determines survival and proliferation. The Oryza sativa (rice) transcription factor IDEF1 plays a crucial role in regulating iron deficiency-induced genes involved in iron homeostasis. In the present report, we found characteristic histidine-asparagine repeat and proline-rich regions in IDEF1 and its homolog in Hordeum vulgare (barley), HvIDEF1. An immobilized metal ion affinity chromatography assay revealed that IDEF1 and HvIDEF1 bind to various divalent metals, including Fe(2+) and Ni(2+) . Recombinant IDEF1 protein expressed in Escherichia coli contained mainly Fe and Zn. This metal-binding activity of IDEF1 was almost abolished by deletion of the histidine-asparagine and proline-rich regions, but DNA-binding and trans-activation functions were not impaired by the deletion. Transgenic rice plants constitutively overexpressing IDEF1 without these metal-binding domains failed to cause pleiotropic effects conferred by overexpression of full-length IDEF1, including a low germination rate, impaired seedling growth, tolerance to iron deficiency in hydroponic culture, and enhanced expression of various iron deficiency-inducible genes. Impairment of the transcriptional regulation of IDEF1 by deletion of the metal-binding domains occurred primarily at an early stage of iron deficiency. These results suggest that the histidine-asparagine and proline-rich regions in rice IDEF1 directly bind to divalent metals and sense the cellular metal ion balance caused by changes in iron availability.


Frontiers in Plant Science | 2013

Iron-biofortification in rice by the introduction of three barley genes participated in mugineic acid biosynthesis with soybean ferritin gene.

Hiroshi Masuda; Takanori Kobayashi; Yasuhiro Ishimaru; Michiko Takahashi; May Sann Aung; Hiromi Nakanishi; Satoshi Mori; Naoko K. Nishizawa

Iron deficiency is a serious problem around the world, especially in developing countries. The production of iron-biofortified rice will help ameliorate this problem. Previously, expression of the iron storage protein, ferritin, in rice using an endosperm-specific promoter resulted in a two-fold increase in iron concentration in the resultant transgenic seeds. However, further over expression of ferritin did not produce an additional increase in the seed iron concentration, and symptoms of iron deficiency were noted in the leaves of the transgenic plants. In the present study, we aimed to further increase the iron concentration in rice seeds without increasing the sensitivity to iron deficiency by enhancing the uptake and transport of iron via a ferric iron chelator, mugineic acid. To this end, we introduced the soybean ferritin gene (SoyferH2) driven by two endosperm-specific promoters, along with the barley nicotianamine synthase gene (HvNAS1), two nicotianamine aminotransferase genes (HvNAAT-A and -B), and a mugineic acid synthase gene (IDS3) to enhance mugineic acid production in rice plants. A marker-free vector was utilized as a means of increasing public acceptance. Representative lines were selected from 102 transformants based on the iron concentration in polished seeds and ferritin accumulation in the seeds. These lines were grown in both commercially supplied soil (iron-sufficient conditions) and calcareous soil (iron-deficient conditions). Lines expressing both ferritin and mugineic acid biosynthetic genes showed signs of iron-deficiency tolerance in calcareous soil. The iron concentration in polished T3 seeds was increased by 4 and 2.5 times, as compared to that in non-transgenic lines grown in normal and calcareous soil, respectively. These results indicate that the concomitant introduction of the ferritin gene and mugineic acid biosynthetic genes effectively increased the seed iron level without causing iron sensitivity under iron-limited conditions.


Rice | 2013

Iron biofortification of rice using different transgenic approaches.

Hiroshi Masuda; May Sann Aung; Naoko K. Nishizawa

More than 2 billion people suffer from iron (Fe) deficiency, and developing crop cultivars with an increased concentration of micronutrients (biofortification) can address this problem. In this review, we describe seven transgenic approaches, and combinations thereof, that can be used to increase the concentration of Fe in rice seeds. The first approach is to enhance the Fe storage capacity of grains through expression of the Fe storage protein ferritin under the control of endosperm-specific promoters. Using this approach, the concentration of Fe in the seeds of transformants was increased by approximately 2-fold in polished seeds. The second approach is to enhance Fe translocation by overproducing the natural metal chelator nicotianamine; using this approach, the Fe concentration was increased by up to 3-fold in polished seeds. The third approach is to enhance Fe influx to the endosperm by expressing the Fe(II)-nicotianamine transporter gene OsYSL2 under the control of an endosperm-specific promoter and sucrose transporter promoter, which increased the Fe concentration by up to 4-fold in polished seeds. The fourth approach is introduction of the barley mugineic acid synthesis gene IDS3 to enhance Fe uptake and translocation within plants, which resulted in a 1.4-fold increase in the Fe concentration in polished seeds during field cultivation. In addition to the above approaches, Fe-biofortified rice was produced using a combination of the first, second, and third approaches. The Fe concentration in greenhouse-grown T2 polished seeds was 6-fold higher and that in paddy field-grown T3 polished seeds was 4.4-fold higher than in non-transgenic seeds without any reduction in yield. When the first and fourth approaches were combined, the Fe concentration was greater than that achieved by introducing only the ferritin gene, and Fe-deficiency tolerance was observed. With respect to Fe biofortification, the introduction of multiple Fe homeostasis genes is more effective than the introduction of individual genes. Moreover, three additional approaches, i.e., overexpression of the Fe transporter gene OsIRT1 or OsYSL15, overexpression of the Fe deficiency-inducible bHLH transcription factor OsIRO2, and knockdown of the vacuolar Fe transporter gene OsVIT1 or OsVIT2, may be useful to further increase the Fe concentration of seeds.


Annals of Botany | 2010

The spatial expression and regulation of transcription factors IDEF1 and IDEF2

Takanori Kobayashi; Yuko Ogo; May Sann Aung; Tomoko Nozoye; Reiko Nakanishi Itai; Hiromi Nakanishi; Takashi Yamakawa; Naoko K. Nishizawa

BACKGROUND AND AIMS Under conditions of low iron availability, rice plants induce genes involved in iron uptake and utilization. The iron deficiency-responsive cis-acting element binding factors 1 and 2 (IDEF1 and IDEF2) regulate transcriptional response to iron deficiency in rice roots. Clarification of the functions of IDEF1 and IDEF2 could uncover the gene regulation mechanism. METHODS Spatial patterns of IDEF1 and IDEF2 expression were analysed by histochemical staining of IDEF1 and IDEF2 promoter-GUS transgenic rice lines. Expression patterns of the target genes of IDEF1 and IDEF2 were analysed using transformants with induced or repressed expression of IDEF1 or IDEF2 grown in iron-rich or in iron-deficient solutions for 1 d. KEY RESULTS IDEF1 and IDEF2 were highly expressed in the basal parts of the lateral roots and vascular bundles. IDEF1 and IDEF2 expression was dominant in leaf mesophyll and vascular cells, respectively. These expression patterns were similar under both iron-deficient and iron-sufficient conditions. IDEF1 was strongly expressed in pollen, ovaries, the aleurone layer and embryo. IDEF2 was expressed in pollen, ovaries and the dorsal vascular region of the endosperm. During seed germination, IDEF1 and IDEF2 were expressed in the endosperm and embryo. Expression of IDEF1 target genes was regulated in iron-rich roots similar to early iron-deficiency stages. In addition, the expression patterns of IDEF2 target genes were similar between iron-rich conditions and early or subsequent iron deficiency. CONCLUSIONS IDEF1 and IDEF2 are constitutively expressed during both vegetative and reproductive stages. The spatial expression patterns of IDEF1 and IDEF2 overlap with their target genes in restricted cell types, but not in all cells. The spatial expression patterns and gene regulation of IDEF1 and IDEF2 in roots are generally conserved under conditions of iron sufficiency and deficiency, suggesting complicated interactions with unknown factors for sensing and transmitting iron-deficiency signals.


Frontiers in Plant Science | 2013

Iron Biofortification of Myanmar Rice

May Sann Aung; Hiroshi Masuda; Takanori Kobayashi; Hiromi Nakanishi; Takashi Yamakawa; Naoko K. Nishizawa

Iron (Fe) deficiency elevates human mortality rates, especially in developing countries. In Myanmar, the prevalence of Fe-deficient anemia in children and pregnant women are 75 and 71%, respectively. Myanmar people have one of the highest per capita rice consumption rates globally. Consequently, production of Fe-biofortified rice would likely contribute to solving the Fe-deficiency problem in this human population. To produce Fe-biofortified Myanmar rice by transgenic methods, we first analyzed callus induction and regeneration efficiencies in 15 varieties that are presently popular because of their high-yields or high-qualities. Callus formation and regeneration efficiency in each variety was strongly influenced by types of culture media containing a range of 2,4-dichlorophenoxyacetic acid concentrations. The Paw San Yin variety, which has a high-Fe content in polished seeds, performed well in callus induction and regeneration trials. Thus, we transformed this variety using a gene expression cassette that enhanced Fe transport within rice plants through overexpression of the nicotianamine synthase gene HvNAS1, Fe flow to the endosperm through the Fe(II)-nicotianamine transporter gene OsYSL2, and Fe accumulation in endosperm by the Fe storage protein gene SoyferH2. A line with a transgene insertion was successfully obtained. Enhanced expressions of the introduced genes OsYSL2, HvNAS1, and SoyferH2 occurred in immature T2 seeds. The transformants accumulated 3.4-fold higher Fe concentrations, and also 1.3-fold higher zinc concentrations in T2 polished seeds compared to levels in non-transgenic rice. This Fe-biofortified rice has the potential to reduce Fe-deficiency anemia in millions of Myanmar people without changing food habits and without introducing additional costs.


Plant Molecular Biology | 2017

The iron-chelate transporter OsYSL9 plays a role in iron distribution in developing rice grains

Takeshi Senoura; Emi Sakashita; Takanori Kobayashi; Michiko Takahashi; May Sann Aung; Hiroshi Masuda; Hiromi Nakanishi; Naoko K. Nishizawa

Key messageRice OsYSL9 is a novel transporter for Fe(II)-nicotianamine and Fe(III)-deoxymugineic acid that is responsible for internal iron transport, especially from endosperm to embryo in developing seeds.AbstractMetal chelators are essential for safe and efficient metal translocation in plants. Graminaceous plants utilize specific ferric iron chelators, mugineic acid family phytosiderophores, to take up sparingly soluble iron from the soil. Yellow Stripe 1-Like (YSL) family transporters are responsible for transport of metal-phytosiderophores and structurally similar metal-nicotianamine complexes. Among the rice YSL family members (OsYSL) whose functions have not yet been clarified, OsYSL9 belongs to an uncharacterized subgroup containing highly conserved homologs in graminaceous species. In the present report, we showed that OsYSL9 localizes mainly to the plasma membrane and transports both iron(II)-nicotianamine and iron(III)-deoxymugineic acid into the cell. Expression of OsYSL9 was induced in the roots but repressed in the nonjuvenile leaves in response to iron deficiency. In iron-deficient roots, OsYSL9 was induced in the vascular cylinder but not in epidermal cells. Although OsYSL9-knockdown plants did not show a growth defect under iron-sufficient conditions, these plants were more sensitive to iron deficiency in the nonjuvenile stage compared with non-transgenic plants. At the grain-filling stage, OsYSL9 expression was strongly and transiently induced in the scutellum of the embryo and in endosperm cells surrounding the embryo. The iron concentration was decreased in embryos of OsYSL9-knockdown plants but was increased in residual parts of brown seeds. These results suggested that OsYSL9 is involved in iron translocation within plant parts and particularly iron translocation from endosperm to embryo in developing seeds.


Soil Science and Plant Nutrition | 2017

Bioenergy grass [Erianthus ravennae (L.) Beauv.] secretes two members of mugineic acid family phytosiderophores which involved in their tolerance to Fe deficiency

Tomoko Nozoye; May Sann Aung; Hiroshi Masuda; Hiromi Nakanishi; Naoko K. Nishizawa

ABSTRACT Ravenna grass, Erianthus ravennae (L.) Beauv. (E. ravennae) is a potential high biomass-energy crop with low input requirements. Iron (Fe) deficiency in calcareous soils is a widespread agronomic problem which reduces crop yields. Fe is sparingly soluble under aerobic conditions at high soil pH, such as in calcareous soils; therefore, plants cannot take up enough Fe. Increasing crop productivity of giant grasses, such as Ravenna grass in calcareous soil, has a positive effect by alleviating environmental problems. However, the growth character in calcareous soil and Fe homeostatic trait of Ravenna grass are largely unknown. In this study, we analyzed characteristics of Ravenna grass. The growth of E. ravennae plants were impaired in calcareous soil compared to those in the normal soil. In calcareous soil, the growth of E. ravennae plants differ among the water and fertilizer conditions; E. ravennae plants were grown better in the submerged condition adding micronutrient among conditions. These results suggested that impaired growth of E. ravennae in calcareous soil might be micronutrient shortage. We found that E. ravennae roots possess Fe reductase activities which were upregulated under Fe-deficient conditions. E. ravennae produced and secreted mugineic acid (MA) and deoxymugineic acid (DMA) to acquire Fe from the soil. The amount of MA was higher than that of DMA. Thus, E. ravennae might have both partial Strategy-I and Strategy-II Fe uptake systems. E. ravennae intercropped with transgenic rice plants producing and secreting MA through the introduction of the barley MA synthase gene showed improved growth compared to monocropped E. ravennae plants, suggesting that the increased amounts of MA enhanced their tolerance to Fe deficiency. Our results suggest that there is a considerable potential to improve the growth of E. ravennae plants in calcareous soils by enhancement of their Fe uptake systems through increase of MA production.


PLOS ONE | 2017

A new transgenic rice line exhibiting enhanced ferric iron reduction and phytosiderophore production confers tolerance to low iron availability in calcareous soil

Hiroshi Masuda; Erika Shimochi; Tatsuro Hamada; Takeshi Senoura; Takanori Kobayashi; May Sann Aung; Yasuhiro Ishimaru; Yuko Ogo; Hiromi Nakanishi; Naoko K. Nishizawa

Iron (Fe) deficiency is a critical agricultural problem, especially in calcareous soil, which is distributed worldwide. Rice plants take up Fe(II) from soil through a OsIRT1 transporter (Strategy I-related system) and also take up Fe(III) via a phytosiderophore-based system (Strategy II system). However, rice plants are susceptible to low-Fe conditions because they have low Fe(III) reduction activity and low-level phytosiderophore secretion. Previously, we produced transgenic rice plants expressing a mutationally reconstructed yeast ferric chelate reductase, refre1/372, under the control of the OsIRT1 promoter. This transgenic rice line exhibited higher Fe(III) chelate reductase activity and tolerance to Fe deficiency. In addition, we produced transgenic rice overexpressing the Fe deficiency-inducible transcription factor, OsIRO2, which regulates the expression of various genes involved in the strategy II Fe(III) uptake system, including OsNAS1, OsNAAT1, OsDMAS1, OsYSL15, and TOM1. This transgenic rice exhibited improved phytosiderophore secretion ability and tolerance to Fe deficiency. In the present research, transgenic rice plants that possess both the OsIRT1 promoter-refre1/372 and the 35S promoter-OsIRO2 (RI lines) were produced to enhance both Strategy I Fe(II) reductase ability and Strategy II phytosiderophore productivity. RI lines exhibited enhanced tolerance to Fe-deficient conditions at the early and middle-late stages of growth in calcareous soil, compared to both the non-transgenic line and lines harboring either OsIRT1 promoter-refre1/372 or 35S promoter-OsIRO2 alone. RI lines also exhibited a 9-fold higher yield than the non-transgenic line. Moreover, we successfully produced Fe-deficiency-tolerant Tachisugata rice, which is a high-biomass variety used as fodder. Collectively, our results demonstrate that combined enhancement of two Fe uptake systems in rice is highly effective in conferring tolerance to low Fe availability in calcareous soil.

Collaboration


Dive into the May Sann Aung's collaboration.

Top Co-Authors

Avatar

Takanori Kobayashi

Ishikawa Prefectural University

View shared research outputs
Top Co-Authors

Avatar

Naoko K. Nishizawa

Ishikawa Prefectural University

View shared research outputs
Top Co-Authors

Avatar

Hiromi Nakanishi

Ishikawa Prefectural University

View shared research outputs
Top Co-Authors

Avatar

Hiroshi Masuda

Ishikawa Prefectural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge