Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maya Kono is active.

Publication


Featured researches published by Maya Kono.


PLOS Pathogens | 2009

Functional Analysis of the Leading Malaria Vaccine Candidate AMA-1 Reveals an Essential Role for the Cytoplasmic Domain in the Invasion Process

Moritz Treeck; Sonja Zacherl; Susann Herrmann; Ana Cabrera; Maya Kono; Nicole S. Struck; Klemens Engelberg; Silvia Haase; Friedrich Frischknecht; Kota Miura; Tobias Spielmann; Tim W. Gilberger

A key process in the lifecycle of the malaria parasite Plasmodium falciparum is the fast invasion of human erythrocytes. Entry into the host cell requires the apical membrane antigen 1 (AMA-1), a type I transmembrane protein located in the micronemes of the merozoite. Although AMA-1 is evolving into the leading blood-stage malaria vaccine candidate, its precise role in invasion is still unclear. We investigate AMA-1 function using live video microscopy in the absence and presence of an AMA-1 inhibitory peptide. This data reveals a crucial function of AMA-1 during the primary contact period upstream of the entry process at around the time of moving junction formation. We generate a Plasmodium falciparum cell line that expresses a functional GFP-tagged AMA-1. This allows the visualization of the dynamics of AMA-1 in live parasites. We functionally validate the ectopically expressed AMA-1 by establishing a complementation assay based on strain-specific inhibition. This method provides the basis for the functional analysis of essential genes that are refractory to any genetic manipulation. Using the complementation assay, we show that the cytoplasmic domain of AMA-1 is not required for correct trafficking and surface translocation but is essential for AMA-1 function. Although this function can be mimicked by the highly conserved cytoplasmic domains of P. vivax and P. berghei, the exchange with the heterologous domain of the microneme protein EBA-175 or the rhoptry protein Rh2b leads to a loss of function. We identify several residues in the cytoplasmic tail that are essential for AMA-1 function. We validate this data using additional transgenic parasite lines expressing AMA-1 mutants with TY1 epitopes. We show that the cytoplasmic domain of AMA-1 is phosphorylated. Mutational analysis suggests an important role for the phosphorylation in the invasion process, which might translate into novel therapeutic strategies.


Nature Biotechnology | 2010

Transcriptional profiling of growth perturbations of the human malaria parasite Plasmodium falciparum

Guangan Hu; Ana Cabrera; Maya Kono; Sachel Mok; Balbir Kaur Chaal; Silvia Haase; Klemens Engelberg; Sabna Cheemadan; Tobias Spielmann; Peter Rainer Preiser; Tim-W. Gilberger; Zbynek Bozdech

Functions have yet to be defined for the majority of genes of Plasmodium falciparum, the agent responsible for the most serious form of human malaria. Here we report changes in P. falciparum gene expression induced by 20 compounds that inhibit growth of the schizont stage of the intraerythrocytic development cycle. In contrast with previous studies, which reported only minimal changes in response to chemically induced perturbations of P. falciparum growth, we find that ∼59% of its coding genes display over three-fold changes in expression in response to at least one of the chemicals we tested. We use this compendium for guilt-by-association prediction of protein function using an interaction network constructed from gene co-expression, sequence homology, domain-domain and yeast two-hybrid data. The subcellular localizations of 31 of 42 proteins linked with merozoite invasion is consistent with their role in this process, a key target for malaria control. Our network may facilitate identification of novel antimalarial drugs and vaccines.


Molecular Microbiology | 2009

Sequence requirements for the export of the Plasmodium falciparum Maurer's clefts protein REX2.

Silvia Haase; Susann Herrmann; Christof Grüring; Arlett Heiber; Pascal W. T. C. Jansen; Christine Langer; Moritz Treeck; Ana Cabrera; Caroline Bruns; Nicole S. Struck; Maya Kono; Klemens Engelberg; Ulrike Ruch; Hendrik G. Stunnenberg; Tim-Wolf Gilberger; Tobias Spielmann

A short motif termed Plasmodium export element (PEXEL) or vacuolar targeting signal (VTS) characterizes Plasmodium proteins exported into the host cell. These proteins mediate host cell modifications essential for parasite survival and virulence. However, several PEXEL‐negative exported proteins indicate that the currently predicted malaria exportome is not complete and it is unknown whether and how these proteins relate to PEXEL‐positive export. Here we show that the N‐terminal 10 amino acids of the PEXEL‐negative exported protein REX2 (ring‐exported protein 2) are necessary for its targeting and that a single‐point mutation in this region abolishes export. Furthermore we show that the REX2 transmembrane domain is also essential for export and that together with the N‐terminal region it is sufficient to promote export of another protein. An N‐terminal region and the transmembrane domain of the unrelated PEXEL‐negative exported protein SBP1 (skeleton‐binding protein 1) can functionally replace the corresponding regions in REX2, suggesting that these sequence features are also present in other PEXEL‐negative exported proteins. Similar to PEXEL proteins we find that REX2 is processed, but in contrast, detect no evidence for N‐terminal acetylation.


PLOS Pathogens | 2010

The essentials of protein import in the degenerate mitochondrion of Entamoeba histolytica.

Pavel Dolezal; Michael J. Dagley; Maya Kono; Peter Wolynec; Vladimir A. Likić; Jung Hock Foo; Miroslava Šedinová; Jan Tachezy; Anna Bachmann; Iris Bruchhaus; Trevor Lithgow

Several essential biochemical processes are situated in mitochondria. The metabolic transformation of mitochondria in distinct lineages of eukaryotes created proteomes ranging from thousands of proteins to what appear to be a much simpler scenario. In the case of Entamoeba histolytica, tiny mitochondria known as mitosomes have undergone extreme reduction. Only recently a single complete metabolic pathway of sulfate activation has been identified in these organelles. The E. histolytica mitosomes do not produce ATP needed for the sulfate activation pathway and for three molecular chaperones, Cpn60, Cpn10 and mtHsp70. The already characterized ADP/ATP carrier would thus be essential to provide cytosolic ATP for these processes, but how the equilibrium of inorganic phosphate could be maintained was unknown. Finally, how the mitosomal proteins are translocated to the mitosomes had remained unclear. We used a hidden Markov model (HMM) based search of the E. histolytica genome sequence to discover candidate (i) mitosomal phosphate carrier complementing the activity of the ADP/ATP carrier and (ii) membrane-located components of the protein import machinery that includes the outer membrane translocation channel Tom40 and membrane assembly protein Sam50. Using in vitro and in vivo systems we show that E. histolytica contains a minimalist set up of the core import components in order to accommodate a handful of mitosomal proteins. The anaerobic and parasitic lifestyle of E. histolytica has produced one of the simplest known mitochondrial compartments of all eukaryotes. Comparisons with mitochondria of another amoeba, Dictystelium discoideum, emphasize just how dramatic the reduction of the protein import apparatus was after the loss of archetypal mitochondrial functions in the mitosomes of E. histolytica.


Traffic | 2012

Dissection of Minimal Sequence Requirements for Rhoptry Membrane Targeting in the Malaria Parasite

Ana Cabrera; Susann Herrmann; Dominik Warszta; Joana M. Santos; Arun T. John Peter; Maya Kono; Sandra Debrouver; Thomas Jacobs; Tobias Spielmann; Christian Ungermann; Dominique Soldati-Favre; Tim W. Gilberger

Rhoptries are specialized secretory organelles characteristic of single cell organisms belonging to the clade Apicomplexa. These organelles play a key role in the invasion process of host cells by accumulating and subsequently secreting an unknown number of proteins mediating host cell entry. Despite their essential role, little is known about their biogenesis, components and targeting determinants. Here, we report on a conserved apicomplexan protein termed Armadillo Repeats‐Only (ARO) protein that we localized to the cytosolic face of Plasmodium falciparum and Toxoplasma gondii rhoptries. We show that the first 20 N‐terminal amino acids are sufficient for rhoptry membrane targeting. This protein relies on both – myristoylation and palmitoylation motifs – for membrane attachment. Although these lipid modifications are essential, they are not sufficient to direct ARO to the rhoptry membranes. Mutational analysis revealed additional residues within the first 20 amino acids of ARO that play an important role for rhoptry membrane attachment: the positively charged residues R9 and K14. Interestingly, the exchange of R9 with a negative charge entirely abolishes membrane attachment, whereas the exchange of K14 (and to a lesser extent K16) alters only its membrane specificity. Additionally, 17 proteins predicted to be myristoylated and palmitoylated in the first 20 N‐terminal amino acids were identified in the genome of the malaria parasite. While most of the corresponding GFP fusion proteins were trafficked to the parasite plasma membrane, two were sorted to the apical organelles. Interestingly, these proteins have a similar motif identified for ARO.


Journal of Biological Chemistry | 2015

The role of palmitoylation for protein recruitment to the inner membrane complex of the malaria parasite

Johanna Wetzel; Susann Herrmann; Lakshmipuram S. Swapna; Dhaneswar Prusty; Arun T. John Peter; Maya Kono; Sidharth Saini; Srinivas Nellimarla; Tatianna Wai Ying Wong; Louisa Wilcke; Olivia Ramsay; Ana Cabrera; Laura Biller; Dorothee Heincke; Karen L. Mossman; Tobias Spielmann; Christian Ungermann; John Parkinson; Tim W. Gilberger

Background: Recruitment of peripheral proteins to the inner membrane complex (IMC) of the malaria parasite can be mediated by N-terminal acylation. Results: Characterization of substrate determinants and identification of an IMC-localized palmitoyl acyltransferase PfDHHC1. Conclusion: Residues close to palmitoylation sites interfere with specific IMC recruitment. PfDHHC1 represents an apicomplexan-specific PAT. Significance: Dissection of palmitoylation for protein recruitment to the inner membrane complex in P. falciparum. To survive and persist within its human host, the malaria parasite Plasmodium falciparum utilizes a battery of lineage-specific innovations to invade and multiply in human erythrocytes. With central roles in invasion and cytokinesis, the inner membrane complex, a Golgi-derived double membrane structure underlying the plasma membrane of the parasite, represents a unique and unifying structure characteristic to all organisms belonging to a large phylogenetic group called Alveolata. More than 30 structurally and phylogenetically distinct proteins are embedded in the IMC, where a portion of these proteins displays N-terminal acylation motifs. Although N-terminal myristoylation is catalyzed co-translationally within the cytoplasm of the parasite, palmitoylation takes place at membranes and is mediated by palmitoyl acyltransferases (PATs). Here, we identify a PAT (PfDHHC1) that is exclusively localized to the IMC. Systematic phylogenetic analysis of the alveolate PAT family reveals PfDHHC1 to be a member of a highly conserved, apicomplexan-specific clade of PATs. We show that during schizogony this enzyme has an identical distribution like two dual-acylated, IMC-localized proteins (PfISP1 and PfISP3). We used these proteins to probe into specific sequence requirements for IMC-specific membrane recruitment and their interaction with differentially localized PATs of the parasite.


Nature Communications | 2016

Ancient human sialic acid variant restricts an emerging zoonotic malaria parasite

Selasi Dankwa; Caeul Lim; Amy K. Bei; Rays H. Y. Jiang; James Robbins Abshire; Saurabh D. Patel; Jonathan M. Goldberg; Yovany Moreno; Maya Kono; Jacquin C. Niles; Manoj T. Duraisingh

Plasmodium knowlesi is a zoonotic parasite transmitted from macaques causing malaria in humans in Southeast Asia. Plasmodium parasites bind to red blood cell (RBC) surface receptors, many of which are sialylated. While macaques synthesize the sialic acid variant N-glycolylneuraminic acid (Neu5Gc), humans cannot because of a mutation in the enzyme CMAH that converts N-acetylneuraminic acid (Neu5Ac) to Neu5Gc. Here we reconstitute CMAH in human RBCs for the reintroduction of Neu5Gc, which results in enhancement of P. knowlesi invasion. We show that two P. knowlesi invasion ligands, PkDBPβ and PkDBPγ, bind specifically to Neu5Gc-containing receptors. A human-adapted P. knowlesi line invades human RBCs independently of Neu5Gc, with duplication of the sialic acid-independent invasion ligand, PkDBPα and loss of PkDBPγ. Our results suggest that absence of Neu5Gc on human RBCs limits P. knowlesi invasion, but that parasites may evolve to invade human RBCs through the use of sialic acid-independent pathways.


Biochemical Journal | 2013

Specific phosphorylation of the PfRh2b invasion ligand of Plasmodium falciparum

Klemens Engelberg; Aditya S. Paul; Boris Prinz; Maya Kono; Wilhelm Ching; Dorothee Heincke; Thomas Dobner; Tobias Spielmann; Manoj T. Duraisingh; Tim-Wolf Gilberger

Red blood cell invasion by the malaria parasite Plasmodium falciparum relies on a complex protein network that uses low and high affinity receptor–ligand interactions. Signal transduction through the action of specific kinases is a control mechanism for the orchestration of this process. In the present study we report on the phosphorylation of the CPD (cytoplasmic domain) of P. falciparum Rh2b (reticulocyte homologue protein 2b). First, we identified Ser3233 as the sole phospho-acceptor site in the CPD for in vitro phosphorylation by parasite extract. We provide several lines of evidence that this phosphorylation is mediated by PfCK2 (P. falciparum casein kinase 2): phosphorylation is cAMP independent, utilizes ATP as well as GTP as phosphate donors, is inhibited by heparin and tetrabromocinnamic acid, and is mediated by purified PfCK2. We raised a phospho-specific antibody and showed that Ser3233 phosphorylation occurs in the parasite prior to host cell egress. We analysed the spatiotemporal aspects of this phosphorylation using immunoprecipitated endogenous Rh2b and minigenes expressing the CPD either at the plasma or rhoptry membrane. Phosphorylation of Rh2b is not spatially restricted to either the plasma or rhoptry membrane and most probably occurs before Rh2b is translocated from the rhoptry neck to the plasma membrane.


Journal of Cell Science | 2016

Pellicle formation in the malaria parasite

Maya Kono; Dorothee Heincke; Louisa Wilcke; Tatianna Wai Ying Wong; Caroline Bruns; Susann Herrmann; Tobias Spielmann; Tim W. Gilberger

ABSTRACT The intraerythrocytic developmental cycle of Plasmodium falciparum is completed with the release of up to 32 invasive daughter cells, the merozoites, into the blood stream. Before release, the final step of merozoite development is the assembly of the cortical pellicle, a multi-layered membrane structure. This unique apicomplexan feature includes the inner membrane complex (IMC) and the parasites plasma membrane. A dynamic ring structure, referred to as the basal complex, is part of the IMC and helps to divide organelles and abscises in the maturing daughter cells. Here, we analyze the dynamics of the basal complex of P. falciparum. We report on a novel transmembrane protein of the basal complex termed BTP1, which is specific to the genus Plasmodium. It colocalizes with the known basal complex marker protein MORN1 and shows distinct dynamics as well as localization when compared to other IMC proteins during schizogony. Using a parasite plasma membrane marker cell line, we correlate dynamics of the basal complex with the acquisition of the maternal membrane. We show that plasma membrane invagination and IMC propagation are interlinked during the final steps of cell division. Summary: We newly identify a Plasmodium-specific transmembrane protein of the basal complex termed BTP1. BTP1 dynamics during schizogony correlate with membrane invagination during the final steps of cell division.


Cellular Microbiology | 2016

A MORN1-associated HAD phosphatase in the basal complex is essential for Toxoplasma gondii daughter budding

Klemens Engelberg; F. Douglas Ivey; Angela Lin; Maya Kono; Alexander Lorestani; Dave Faugno-Fusci; Tim-Wolf Gilberger; Michael W. White; Marc-Jan Gubbels

Apicomplexan parasites replicate by several budding mechanisms with two well‐characterized examples being Toxoplasma endodyogeny and Plasmodium schizogony. Completion of budding requires the tapering of the nascent daughter buds toward the basal end, driven by contraction of the basal complex. This contraction is not executed by any of the known cell division associated contractile mechanisms and in order to reveal new components of the unusual basal complex we performed a yeast two‐hybrid screen with its major scaffolding protein, TgMORN1. Here we report on a conserved protein with a haloacid dehalogenase (HAD) phosphatase domain, hereafter named HAD2a, identified by yeast two‐hybrid. HAD2a has demonstrated enzyme‐activity in vitro, localizes to the nascent daughter buds, and co‐localizes with MORN1 to the basal complex during its contraction. Conditional knockout of HAD2a in Toxoplasma interferes with basal complex assembly, which leads to incomplete cytokinesis and conjoined daughters that ultimately results in disrupted proliferation. In Plasmodium, we further confirmed localization of the HAD2a ortholog to the basal complex toward the end of schizogony. In conclusion, our work highlights an essential role for this HAD phosphatase across apicomplexan budding and suggests a regulatory mechanism of differential phosphorylation on the structure and/or contractile function of the basal complex.

Collaboration


Dive into the Maya Kono's collaboration.

Top Co-Authors

Avatar

Tobias Spielmann

Bernhard Nocht Institute for Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Ana Cabrera

Bernhard Nocht Institute for Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Klemens Engelberg

Bernhard Nocht Institute for Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Tim W. Gilberger

Bernhard Nocht Institute for Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dorothee Heincke

Bernhard Nocht Institute for Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Silvia Haase

Bernhard Nocht Institute for Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Tim-Wolf Gilberger

Bernhard Nocht Institute for Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caroline Bruns

Bernhard Nocht Institute for Tropical Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge