Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maya Lottati is active.

Publication


Featured researches published by Maya Lottati.


Obesity | 2009

Greater Omentectomy Improves Insulin Sensitivity in Nonobese Dogs

Maya Lottati; Cathryn M. Kolka; Darko Stefanovski; Erlinda L. Kirkman; Richard N. Bergman

Visceral adiposity is strongly associated with insulin resistance; however, little evidence directly demonstrates that visceral fat per se impairs insulin action. Here, we examine the effects of the surgical removal of the greater omentum and its occupying visceral fat, an omentectomy (OM), on insulin sensitivity (SI) and β‐cell function in nonobese dogs. Thirteen male mongrel dogs were used in this research study; animals were randomly assigned to surgical treatment with either OM (n = 7), or sham‐surgery (SHAM) (n = 6). OM failed to generate measurable changes in body weight (+2%; P = 0.1), or subcutaneous adiposity (+3%; P = 0.83) as assessed by magnetic resonance imaging (MRI). The removal of the greater omentum did not significantly reduce total visceral adipose volume (−7.3 ± 6.4%; P = 0.29); although primary analysis showed a trend for OM to increase SI when compared to sham operated animals (P = 0.078), further statistical analysis revealed that this minor reduction in visceral fat alleviated insulin resistance by augmenting SI of the periphery (+67.7 ± 35.2%; P = 0.03), as determined by the euglycemic‐hyperinsulinemic clamp. Insulin secretory response during the hyperglycemic step clamp was not directly influenced by omental fat removal (presurgery 6.82 ± 1.4 vs. postsurgery: 6.7 ± 1.2 pmol/l/mg/dl, P = 0.9). These findings provide new evidence for the deleterious role of visceral fat in insulin resistance, and suggest that a greater OM procedure may effectively improve insulin sensitivity.


Obesity | 2011

Large Size Cells in the Visceral Adipose Depot Predict Insulin Resistance in the Canine Model

Morvarid Kabir; Darko Stefanovski; Isabel R. Hsu; Malini S. Iyer; Orison Woolcott; Dan Zheng; Karyn J. Catalano; Jenny D. Chiu; Stella P. Kim; Lisa N. Harrison; Viorica Ionut; Maya Lottati; Richard N. Bergman; Joyce M. Richey

Adipocyte size plays a key role in the development of insulin resistance. We examined longitudinal changes in adipocyte size and distribution in visceral (VIS) and subcutaneous (SQ) fat during obesity‐induced insulin resistance and after treatment with CB‐1 receptor antagonist, rimonabant (RIM) in canines. We also examined whether adipocyte size and/or distribution is predictive of insulin resistance. Adipocyte morphology was assessed by direct microscopy and analysis of digital images in previously studied animals 6 weeks after high‐fat diet (HFD) and 16 weeks of HFD + placebo (PL; n = 8) or HFD + RIM (1.25 mg/kg/day; n = 11). At 6 weeks, mean adipocyte diameter increased in both depots with a bimodal pattern only in VIS. Sixteen weeks of HFD+PL resulted in four normally distributed cell populations in VIS and a bimodal pattern in SQ. Multilevel mixed‐effects linear regression with random‐effects model of repeated measures showed that size combined with share of adipocytes >75 µm in VIS only was related to hepatic insulin resistance. VIS adipocytes >75 µm were predictive of whole body and hepatic insulin resistance. In contrast, there was no predictive power of SQ adipocytes >75 µm regarding insulin resistance. RIM prevented the formation of large cells, normalizing to pre‐fat status in both depots. The appearance of hypertrophic adipocytes in VIS is a critical predictor of insulin resistance, supporting the deleterious effects of increased VIS adiposity in the pathogenesis of insulin resistance.


American Journal of Physiology-endocrinology and Metabolism | 2009

Rimonabant prevents additional accumulation of visceral and subcutaneous fat during high-fat feeding in dogs

Joyce M. Richey; Orison O. Woolcott; Darko Stefanovski; L. Nicole Harrison; Dan Zheng; Maya Lottati; Isabel R. Hsu; Stella P. Kim; Morvarid Kabir; Karyn J. Catalano; Jenny D. Chiu; Viorica Ionut; Cathryn M. Kolka; Vahe Mooradian; Richard N. Bergman

We investigated whether rimonabant, a type 1 cannabinoid receptor antagonist, reduces visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in dogs maintained on a hypercaloric high-fat diet (HHFD). To determine whether energy expenditure contributed to body weight changes, we also calculated resting metabolic rate. Twenty male dogs received either rimonabant (1.25 mg.kg(-1).day(-1), orally; n = 11) or placebo (n = 9) for 16 wk, concomitant with a HHFD. VAT, SAT, and nonfat tissue were measured by magnetic resonance imaging. Resting metabolic rate was assessed by indirect calorimetry. By week 16 of treatment, rimonabant dogs lost 2.5% of their body weight (P = 0.029), whereas in placebo dogs body weight increased by 6.2% (P < 0.001). Rimonabant reduced food intake (P = 0.027), concomitant with a reduction of SAT by 19.5% (P < 0.001). In contrast with the VAT increase with placebo (P < 0.01), VAT did not change with rimonabant. Nonfat tissue remained unchanged in both groups. Body weight loss was not associated with either resting metabolic rate (r(2) = 0.24; P = 0.154) or food intake (r(2) = 0.24; P = 0.166). In conclusion, rimonabant reduced body weight together with a reduction in abdominal fat, mainly because of SAT loss. Body weight changes were not associated with either resting metabolic rate or food intake. The findings provide evidence of a peripheral effect of rimonabant to reduce adiposity and body weight, possibly through a direct effect on adipose tissue.


Diabetes | 2010

Diet-Induced Obesity Prevents Interstitial Dispersion of Insulin in Skeletal Muscle

Cathryn M. Kolka; L. Nicole Harrison; Maya Lottati; Jenny D. Chiu; Erlinda L. Kirkman; Richard N. Bergman

OBJECTIVE Obesity causes insulin resistance, which has been interpreted as reduced downstream insulin signaling. However, changes in access of insulin to sensitive tissues such as skeletal muscle may also play a role. Insulin injected directly into skeletal muscle diffuses rapidly through the interstitial space to cause glucose uptake. When insulin resistance is induced by exogenous lipid infusion, this interstitial diffusion process is curtailed. Thus, the possibility exists that hyperlipidemia, such as that seen during obesity, may inhibit insulin action to muscle cells and exacerbate insulin resistance. Here we asked whether interstitial insulin diffusion is reduced in physiological obesity induced by a high-fat diet (HFD). RESEARCH DESIGN AND METHODS Dogs were fed a regular diet (lean) or one supplemented with bacon grease for 9–12 weeks (HFD). Basal insulin (0.2 mU · min−1 · kg−1) euglycemic clamps were performed on fat-fed animals (n = 6). During clamps performed under anesthesia, five sequential doses of insulin were injected into the vastus medialis of one hind limb (INJ); the contralateral limb (NINJ) served as a control. RESULTS INJ lymph insulin showed an increase above NINJ in lean animals, but no change in HFD-fed animals. Muscle glucose uptake observed in lean animals did not occur in HFD-fed animals. CONCLUSIONS Insulin resistance induced by HFD caused a failure of intramuscularly injected insulin to diffuse through the interstitial space and failure to cause glucose uptake, compared with normal animals. High-fat feeding prevents the appearance of injected insulin in the interstitial space, thus reducing binding to skeletal muscle cells and glucose uptake.


PLOS ONE | 2011

Consistency of the Disposition Index in the Face of Diet Induced Insulin Resistance: Potential Role of FFA

Darko Stefanovski; Joyce M. Richey; Orison Woolcott; Maya Lottati; Dan Zheng; Lisa N. Harrison; Viorica Ionut; Stella P. Kim; Isabel R. Hsu; Richard N. Bergman

Objective Insulin resistance induces hyperinsulinemic compensation, which in turn maintains almost a constant disposition index. However, the signal that gives rise to the hyperinsulinemic compensation for insulin resistance remains unknown. Methods In a dog model of obesity we examined the possibility that potential early-week changes in plasma FFA, glucose, or both could be part of a cascade of signals that lead to compensatory hyperinsulinemia induced by insulin resistance. Results Hypercaloric high fat feeding in dogs resulted in modest weight gain, and an increase in adipose tissue with no change in the non-adipose tissue size. To compensate for the drop in insulin sensitivity, there was a significant rise in plasma insulin, which can be attributed in part to a decrease in the metabolic clearance rate of insulin and increased insulin secretion. In this study we observed complete compensation for high fat diet induced insulin resistance as measured by the disposition index. The compensatory hyperinsulinemia was coupled with significant changes in plasma FFAs and no change in plasma glucose. Conclusions We postulate that early in the development of diet induced insulin resistance, a change in plasma FFAs may directly, through signaling at the level of β-cell, or indirectly, by decreasing hepatic insulin clearance, result in the observed hyperinsulinemic compensation.


American Journal of Physiology-endocrinology and Metabolism | 2012

CB1 antagonism restores hepatic insulin sensitivity without normalization of adiposity in diet-induced obese dogs

Stella P. Kim; Orison O. Woolcott; Isabel R. Hsu; Darko Stefanoski; L. Nicole Harrison; Dan Zheng; Maya Lottati; Cathryn M. Kolka; Karyn J. Catalano; Jenny D. Chiu; Morvarid Kabir; Viorica Ionut; Richard N. Bergman; Joyce M. Richey

The endocannabinoid system is highly implicated in the development of insulin resistance associated with obesity. It has been shown that antagonism of the CB(1) receptor improves insulin sensitivity (S(I)). However, it is unknown whether this improvement is due to the direct effect of CB(1) blockade on peripheral tissues or secondary to decreased fat mass. Here, we examine in the canine dog model the longitudinal changes in S(I) and fat deposition when obesity was induced with a high-fat diet (HFD) and animals were treated with the CB(1) antagonist rimonabant. S(I) was assessed (n = 20) in animals fed a HFD for 6 wk to establish obesity. Thereafter, while HFD was continued for 16 additional weeks, animals were divided into two groups: rimonabant (1.25 mg·kg(-1)·day(-1) RIM; n = 11) and placebo (n = 9). Euglycemic hyperinsulinemic clamps were performed to evaluate changes in insulin resistance and glucose turnover before HFD (week -6) after HFD but before treatment (week 0) and at weeks 2, 6, 12, and 16 of treatment (or placebo) + HFD. Magnetic resonance imaging was performed to determine adiposity- related changes in S(I). Animals developed significant insulin resistance and increased visceral and subcutaneous adiposity after 6 wk of HFD. Treatment with RIM resulted in a modest decrease in total trunk fat with relatively little change in peripheral glucose uptake. However, there was significant improvement in hepatic insulin resistance after only 2 wk of RIM treatment with a concomitant increase in plasma adiponectin levels; both were maintained for the duration of the RIM treatment. CB(1) receptor antagonism appears to have a direct effect on hepatic insulin sensitivity that may be mediated by adiponectin and independent of pronounced reductions in body fat. However, the relatively modest effect on peripheral insulin sensitivity suggests that significant improvements may be secondary to reduced fat mass.


Pancreas | 2012

Simplified method to isolate highly pure canine pancreatic islets.

Orison O. Woolcott; Richard N. Bergman; Joyce M. Richey; Erlinda L. Kirkman; L. Nicole Harrison; Viorica Ionut; Maya Lottati; Dan Zheng; Isabel R. Hsu; Darko Stefanovski; Morvarid Kabir; Stella P. Kim; Karyn J. Catalano; Jenny D. Chiu; Robert H. Chow

Objectives The canine model has been used extensively to improve the human pancreatic islet isolation technique. At the functional level, dog islets show high similarity to human islets and thus can be a helpful tool for islet research. We describe and compare 2 manual isolation methods, M1 (initial) and M2 (modified), and analyze the variables associated with the outcomes, including islet yield, purity, and glucose-stimulated insulin secretion (GSIS). Methods Male mongrel dogs were used in the study. M2 (n = 7) included higher collagenase concentration, shorter digestion time, faster shaking speed, colder purification temperature, and higher differential density gradient than M1 (n = 7). Results Islet yield was similar between methods (3111.0 ± 309.1 and 3155.8 ± 644.5 islets/g, M1 and M2, respectively; P = 0.951). Pancreas weight and purity together were directly associated with the yield (adjusted R2 = 0.61; P = 0.002). Purity was considerably improved with M2 (96.7% ± 1.2% vs 75.0% ± 6.3%; P = 0.006). M2 improved GSIS (P = 0.021). Independently, digestion time was inversely associated with GSIS. Conclusions We describe an isolation method (M2) to obtain a highly pure yield of dog islets with adequate &bgr;-cell glucose responsiveness. The isolation variables associated with the outcomes in our canine model confirm previous reports in other species, including humans.


Obesity | 2014

Variable Hepatic Insulin Clearance with Attendant Insulinemia is the Primary Determinant of Insulin Sensitivity in the Normal Dog

Marilyn Ader; Darko Stefanovski; Stella P. Kim; Joyce M. Richey; Viorica Ionut; Karyn J. Catalano; Katrin Hücking; Martin Ellmerer; Gregg W. Van Citters; Isabel R. Hsu; Jenny D. Chiu; Orison O. Woolcott; Lisa N. Harrison; Dan Zheng; Maya Lottati; Cathryn M. Kolka; Vahe Mooradian; Justin Dittmann; Sophia Yae; Huiwen Liu; Ana Valéria Barros de Castro; Morvarid Kabir; Richard N. Bergman

Insulin resistance is a powerful risk factor for Type 2 diabetes and a constellation of chronic diseases, and is most commonly associated with obesity. We examined if factors other than obesity are more substantial predictors of insulin sensitivity under baseline, nonstimulated conditions.


PLOS ONE | 2015

High-fat diet-induced insulin resistance does not increase plasma anandamide levels or potentiate anandamide insulinotropic effect in isolated canine islets.

Orison O. Woolcott; Joyce M. Richey; Morvarid Kabir; Robert H. Chow; Malini S. Iyer; Erlinda L. Kirkman; Darko Stefanovski; Maya Lottati; Stella P. Kim; L. Nicole Harrison; Viorica Ionut; Dan Zheng; Isabel R. Hsu; Karyn J. Catalano; Jenny D. Chiu; Heather B. Bradshaw; Qiang Wu; Richard N. Bergman

Background Obesity has been associated with elevated plasma anandamide levels. In addition, anandamide has been shown to stimulate insulin secretion in vitro, suggesting that anandamide might be linked to hyperinsulinemia. Objective To determine whether high-fat diet-induced insulin resistance increases anandamide levels and potentiates the insulinotropic effect of anandamide in isolated pancreatic islets. Design and Methods Dogs were fed a high-fat diet (n = 9) for 22 weeks. Abdominal fat depot was quantified by MRI. Insulin sensitivity was assessed by the euglycemic-hyperinsulinemic clamp. Fasting plasma endocannabinoid levels were analyzed by liquid chromatography-mass spectrometry. All metabolic assessments were performed before and after fat diet regimen. At the end of the study, pancreatic islets were isolated prior to euthanasia to test the in vitro effect of anandamide on islet hormones. mRNA expression of cannabinoid receptors was determined in intact islets. The findings in vitro were compared with those from animals fed a control diet (n = 7). Results Prolonged fat feeding increased abdominal fat content by 81.3±21.6% (mean±S.E.M, P<0.01). In vivo insulin sensitivity decreased by 31.3±12.1% (P<0.05), concomitant with a decrease in plasma 2-arachidonoyl glycerol (from 39.1±5.2 to 15.7±2.0 nmol/L) but not anandamide, oleoyl ethanolamide, linoleoyl ethanolamide, or palmitoyl ethanolamide. In control-diet animals (body weight: 28.8±1.0 kg), islets incubated with anandamide had a higher basal and glucose-stimulated insulin secretion as compared with no treatment. Islets from fat-fed animals (34.5±1.3 kg; P<0.05 versus control) did not exhibit further potentiation of anandamide-induced insulin secretion as compared with control-diet animals. Glucagon but not somatostatin secretion in vitro was also increased in response to anandamide, but there was no difference between groups (P = 0.705). No differences in gene expression of CB1R or CB2R between groups were found. Conclusions In canines, high-fat diet-induced insulin resistance does not alter plasma anandamide levels or further potentiate the insulinotropic effect of anandamide in vitro.


Obesity | 2014

Hepatic insulin clearance is the primary determinant of insulin sensitivity in the normal dog: Factors Determining Fasting Insulin Sensitivity

Marilyn Ader; Darko Stefanovski; Stella P. Kim; Joyce M. Richey; Viorica Ionut; Karyn J. Catalano; Katrin Hücking; Martin Ellmerer; Gregg W. Van Citters; Isabel R. Hsu; Jenny D. Chiu; Orison O. Woolcott; Lisa N. Harrison; Dan Zheng; Maya Lottati; Cathryn M. Kolka; Vahe Mooradian; Justin Dittmann; Sophia Yae; Huiwen Liu; Ana Valeria B. Castro; Morvarid Kabir; Richard N. Bergman

Insulin resistance is a powerful risk factor for Type 2 diabetes and a constellation of chronic diseases, and is most commonly associated with obesity. We examined if factors other than obesity are more substantial predictors of insulin sensitivity under baseline, nonstimulated conditions.

Collaboration


Dive into the Maya Lottati's collaboration.

Top Co-Authors

Avatar

Richard N. Bergman

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Viorica Ionut

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Darko Stefanovski

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Dan Zheng

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Stella P. Kim

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Isabel R. Hsu

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Joyce M. Richey

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Jenny D. Chiu

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Karyn J. Catalano

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Morvarid Kabir

Cedars-Sinai Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge