Maya Mincheva
Northern Illinois University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maya Mincheva.
Proceedings of the IEEE | 2008
Maya Mincheva; Gheorghe Craciun
We represent interactions among biochemical species using a directed multigraph, which is a generalization of a more commonly used digraph. We show that network properties that are known to lead to multistability or oscillations, such as the existence of a positive feedback cycle, can be generalized to ldquocritical subnetworksrdquo that can contain several cycles. We also derive corresponding graph-theoretic conditions for pattern formation for the respective reaction-diffusion models. We present as an example a model for cell cycle and apoptosis along with bifurcation diagrams and sample solutions that confirm the predictions obtained with the help of the multigraph network conditions.
Journal of the Royal Society Interface | 2014
Carsten Conradi; Maya Mincheva
Dual phosphorylation of proteins is a principal component of intracellular signalling. Bistability is considered an important property of such systems and its origin is not yet completely understood. Theoretical studies have established parameter values for multistationarity and bistability for many types of proteins. However, up to now no formal criterion linking multistationarity and bistability to the parameter values characterizing dual phosphorylation has been established. Deciding whether an unclassified protein has the capacity for bistability, therefore requires careful numerical studies. Here, we present two general algebraic conditions in the form of inequalities. The first employs the catalytic constants, and if satisfied guarantees multistationarity (and hence the potential for bistability). The second involves the catalytic and Michaelis constants, and if satisfied guarantees uniqueness of steady states (and hence absence of bistability). Our method also allows for the direct computation of the total concentration values such that multistationarity occurs. Applying our results yields insights into the emergence of bistability in the ERK–MEK–MKP system that previously required a delicate numerical effort. Our algebraic conditions present a practical way to determine the capacity for bistability and hence will be a useful tool for examining the origin of bistability in many models containing dual phosphorylation.
Journal of Chemical Physics | 2006
Maya Mincheva; Marc R. Roussel
The conditions for diffusion-driven (Turing) instabilities in systems with two reactive species are well known. General methods for detecting potential Turing bifurcations in larger reaction schemes are, on the other hand, not well developed. We prove a theorem for a graph-theoretic condition originally given by Volpert and Ivanova [Mathematical Modeling (Nauka, Moscow, 1987) (in Russian), p. 57] for Turing instabilities in a mass-action reaction-diffusion system involving n substances. The method is based on the representation of a reaction mechanism as a bipartite graph with two types of nodes representing chemical species and reactions, respectively. The condition for diffusion-driven instability is related to the existence of a structure in the graph known as a critical fragment. The technique is illustrated using a substrate-inhibited bifunctional enzyme mechanism which involves seven chemical species.
Bulletin of Mathematical Biology | 2011
Maya Mincheva
Biochemical reaction models show a variety of dynamical behaviors, such as stable steady states, multistability, and oscillations. Biochemical reaction networks with generalized mass action kinetics are represented as directed bipartite graphs with nodes for species and reactions. The bipartite graph of a biochemical reaction network usually contains at least one cycle, i.e., a sequence of nodes and directed edges which starts and ends at the same species node. Cycles can be positive or negative, and it has been shown that oscillations can arise as a result of either a positive cycle or a negative cycle. In earlier work it was shown that oscillations associated with a positive cycle can arise from subnetworks with an odd number of positive cycles. In this article we formulate a similar graph-theoretic condition, which generalizes the negative cycle condition for oscillations. This new graph-theoretic condition for oscillations involves pairs of subnetworks with an even number of positive cycles. An example of a calcium reaction network with generalized mass action kinetics is discussed in detail.
PLOS Computational Biology | 2017
Carsten Conradi; Elisenda Feliu; Maya Mincheva; Carsten Wiuf
Mathematical modelling has become an established tool for studying the dynamics of biological systems. Current applications range from building models that reproduce quantitative data to identifying systems with predefined qualitative features, such as switching behaviour, bistability or oscillations. Mathematically, the latter question amounts to identifying parameter values associated with a given qualitative feature. We introduce a procedure to partition the parameter space of a parameterized system of ordinary differential equations into regions for which the system has a unique or multiple equilibria. The procedure is based on the computation of the Brouwer degree, and it creates a multivariate polynomial with parameter depending coefficients. The signs of the coefficients determine parameter regions with and without multistationarity. A particular strength of the procedure is the avoidance of numerical analysis and parameter sampling. The procedure consists of a number of steps. Each of these steps might be addressed algorithmically using various computer programs and available software, or manually. We demonstrate our procedure on several models of gene transcription and cell signalling, and show that in many cases we obtain a complete partitioning of the parameter space with respect to multistationarity.
Molecular BioSystems | 2013
Conner I. Sandefur; Maya Mincheva; Santiago Schnell
Systems biologists increasingly use network representations to investigate biochemical pathways and their dynamic behaviours. In this critical review, we discuss four commonly used network representations of chemical and biochemical pathways. We illustrate how some of these representations reduce network complexity but result in the ambiguous representation of biochemical pathways. We also examine the current theoretical approaches available to investigate the dynamic behaviour of chemical and biochemical networks. Finally, we describe how the critical chemical and biochemical pathways responsible for emergent dynamic behaviour can be identified using network mining and functional mapping approaches.
BMC Systems Biology | 2014
Georg R Walther; Matthew Hartley; Maya Mincheva
BackgroundA biochemical mechanism with mass action kinetics can be represented as a directed bipartite graph (bipartite digraph), and modeled by a system of differential equations. If the differential equations (DE) model can give rise to some instability such as multistability or Turing instability, then the bipartite digraph contains a structure referred to as a critical fragment. In some cases the existence of a critical fragment indicates that the DE model can display oscillations for some parameter values. We have implemented a graph-theoretic method that identifies the critical fragments of the bipartite digraph of a biochemical mechanism.ResultsGraTeLPy lists all critical fragments of the bipartite digraph of a given biochemical mechanism, thus enabling a preliminary analysis on the potential of a biochemical mechanism for some instability based on its topological structure. The correctness of the implementation is supported by multiple examples. The code is implemented in Python, relies on open software, and is available under the GNU General Public License.ConclusionsGraTeLPy can be used by researchers to test large biochemical mechanisms with mass action kinetics for their capacity for multistability, oscillations and Turing instability.
Bellman Prize in Mathematical Biosciences | 2012
Maya Mincheva; Marc R. Roussel
Network conditions for Turing instability in biochemical systems with two biochemical species are well known and involve autocatalysis or self-activation. On the other hand general network conditions for potential Turing instabilities in large biochemical reaction networks are not well developed. A biochemical reaction network with any number of species where only one species moves is represented by a simple digraph and is modeled by a reaction-diffusion system with non-mass action kinetics. A graph-theoretic condition for potential Turing-Hopf instability that arises when a spatially homogeneous equilibrium loses its stability via a single pair of complex eigenvalues is obtained. This novel graph-theoretic condition is closely related to the negative cycle condition for oscillations in ordinary differential equation models and its generalizations, and requires the existence of a pair of subnetworks, each containing an even number of positive cycles. The technique is illustrated with a double-cycle Goodwin type model.
Mathematics and Computers in Simulation | 2017
Carsten Conradi; Maya Mincheva
Biochemical mechanisms with mass action kinetics are often modeled by systems of polynomial differential equations (DE). Determining directly if the DE system has multiple equilibria (multistationarity) is difficult for realistic systems, since they are large, nonlinear and contain many unknown parameters. Mass action biochemical mechanisms can be represented by a directed bipartite graph with species and reaction nodes. Graph-theoretic methods can then be used to assess the potential of a given biochemical mechanism for multistationarity by identifying structures in the bipartite graph referred to as critical fragments. In this article we present a graph-theoretic method for conservative biochemical mechanisms characterized by bounded species concentrations, which makes the use of degree theory arguments possible. We illustrate the results with an example of a MAPK network.
Journal of Mathematical Chemistry | 2012
Maya Mincheva
It is well known that oscillations in models of biochemical reaction networks can arise as a result of a single negative cycle. On the other hand, methods for finding general network conditions for potential oscillations in large biochemical reaction networks containing many cycles are not well developed. A biochemical reaction network with any number of species is represented by a simple digraph and is modeled by an ordinary differential equation (ODE) system with non-mass action kinetics. The obtained graph-theoretic condition generalizes the negative cycle condition for oscillations in ODE models to the existence of a pair of subnetworks, where each subnetwork contains an even number of positive cycles. The technique is illustrated with a model of genetic regulation.