Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maya Schuldiner is active.

Publication


Featured researches published by Maya Schuldiner.


Nature | 2007

Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map

Sean R. Collins; Kyle M. Miller; Nancy L. Maas; Assen Roguev; Jeffrey Fillingham; Clement S. Chu; Maya Schuldiner; Marinella Gebbia; Judith Recht; Michael Shales; Huiming Ding; Hong Xu; Junhong Han; Kristin Ingvarsdottir; Benjamin Cheng; Brenda Andrews; Charles Boone; Shelley L. Berger; Phil Hieter; Zhiguo Zhang; Grant W. Brown; C. James Ingles; Andrew Emili; C. David Allis; David P. Toczyski; Jonathan S. Weissman; Jack Greenblatt; Nevan J. Krogan

Defining the functional relationships between proteins is critical for understanding virtually all aspects of cell biology. Large-scale identification of protein complexes has provided one important step towards this goal; however, even knowledge of the stoichiometry, affinity and lifetime of every protein–protein interaction would not reveal the functional relationships between and within such complexes. Genetic interactions can provide functional information that is largely invisible to protein–protein interaction data sets. Here we present an epistatic miniarray profile (E-MAP) consisting of quantitative pairwise measurements of the genetic interactions between 743 Saccharomyces cerevisiae genes involved in various aspects of chromosome biology (including DNA replication/repair, chromatid segregation and transcriptional regulation). This E-MAP reveals that physical interactions fall into two well-represented classes distinguished by whether or not the individual proteins act coherently to carry out a common function. Thus, genetic interaction data make it possible to dissect functionally multi-protein complexes, including Mediator, and to organize distinct protein complexes into pathways. In one pathway defined here, we show that Rtt109 is the founding member of a novel class of histone acetyltransferases responsible for Asf1-dependent acetylation of histone H3 on lysine 56. This modification, in turn, enables a ubiquitin ligase complex containing the cullin Rtt101 to ensure genomic integrity during DNA replication.


Science | 2009

An ER-Mitochondria Tethering Complex Revealed by a Synthetic Biology Screen

Benoît Kornmann; Erin Currie; Sean R. Collins; Maya Schuldiner; Jodi Nunnari; Jonathan S. Weissman; Peter Walter

Making Connections Endoplasmic reticulum (ER)–mitochondria connections have been implicated in many physiological processes, including calcium homeostasis, signaling, membrane biogenesis, and apoptosis. Kornmann et al. (p. 477, published online 25 June; see the Perspective by Wiedemann et al.) looked for a proteinaceous link between the ER and mitochondria and, using combinations of synthetic biology and classical yeast genetics, found a protein complex that tethers the two organelles. A large-scale genetic interaction map suggests that these ER-mitochondria connections are important for interorganellar phospholipid exchange. A protein complex zippers mitochondria to endoplasmic reticulum for phospholipid transfer. Communication between organelles is an important feature of all eukaryotic cells. To uncover components involved in mitochondria/endoplasmic reticulum (ER) junctions, we screened for mutants that could be complemented by a synthetic protein designed to artificially tether the two organelles. We identified the Mmm1/Mdm10/Mdm12/Mdm34 complex as a molecular tether between ER and mitochondria. The tethering complex was composed of proteins resident of both ER and mitochondria. With the use of genome-wide mapping of genetic interactions, we showed that the components of the tethering complex were functionally connected to phospholipid biosynthesis and calcium-signaling genes. In mutant cells, phospholipid biosynthesis was impaired. The tethering complex localized to discrete foci, suggesting that discrete sites of close apposition between ER and mitochondria facilitate interorganelle calcium and phospholipid exchange.


Cell | 2005

Exploration of the Function and Organization of the Yeast Early Secretory Pathway through an Epistatic Miniarray Profile

Maya Schuldiner; Sean R. Collins; Natalie J. Thompson; Vladimir Denic; Arunashree Bhamidipati; Thanuja Punna; Jan Ihmels; Brenda Andrews; Charles Boone; Jack Greenblatt; Jonathan S. Weissman; Nevan J. Krogan

We present a strategy for generating and analyzing comprehensive genetic-interaction maps, termed E-MAPs (epistatic miniarray profiles), comprising quantitative measures of aggravating or alleviating interactions between gene pairs. Crucial to the interpretation of E-MAPs is their high-density nature made possible by focusing on logically connected gene subsets and including essential genes. Described here is the analysis of an E-MAP of genes acting in the yeast early secretory pathway. Hierarchical clustering, together with novel analytical strategies and experimental verification, revealed or clarified the role of many proteins involved in extensively studied processes such as sphingolipid metabolism and retention of HDEL proteins. At a broader level, analysis of the E-MAP delineated pathway organization and components of physical complexes and illustrated the interconnection between the various secretory processes. Extension of this strategy to other logically connected gene subsets in yeast and higher eukaryotes should provide critical insights into the functional/organizational principles of biological systems.


Cell | 2005

Cotranscriptional Set2 Methylation of Histone H3 Lysine 36 Recruits a Repressive Rpd3 Complex

Michael Christopher Keogh; Siavash K. Kurdistani; Stephanie A. Morris; Seong Hoon Ahn; Vladimir Podolny; Sean R. Collins; Maya Schuldiner; Kayu Chin; Thanuja Punna; Natalie J. Thompson; Charles Boone; Andrew Emili; Jonathan S. Weissman; Timothy R. Hughes; Michael Grunstein; Jack Greenblatt; Stephen Buratowski; Nevan J. Krogan

The yeast histone deacetylase Rpd3 can be recruited to promoters to repress transcription initiation. Biochemical, genetic, and gene-expression analyses show that Rpd3 exists in two distinct complexes. The smaller complex, Rpd3C(S), shares Sin3 and Ume1 with Rpd3C(L) but contains the unique subunits Rco1 and Eaf3. Rpd3C(S) mutants exhibit phenotypes remarkably similar to those of Set2, a histone methyltransferase associated with elongating RNA polymerase II. Chromatin immunoprecipitation and biochemical experiments indicate that the chromodomain of Eaf3 recruits Rpd3C(S) to nucleosomes methylated by Set2 on histone H3 lysine 36, leading to deacetylation of transcribed regions. This pathway apparently acts to negatively regulate transcription because deleting the genes for Set2 or Rpd3C(S) bypasses the requirement for the positive elongation factor Bur1/Bur2.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Characterization of the expression of MHC proteins in human embryonic stem cells

Micha Drukker; Gil Katz; Achia Urbach; Maya Schuldiner; Gal Markel; Joseph Itskovitz-Eldor; Benjamin E. Reubinoff; Ofer Mandelboim; Nissim Benvenisty

Human embryonic stem (ES) cells are pluripotent cells that may be used in transplantation medicine. These cells can be induced to differentiate into cells from the three embryonic germ layers both in vivo and in vitro. To determine whether human ES cells might be rejected after transplantation, we examined cell surface expression of the MHC proteins in these cells. Our results show very low expression levels of MHC class I (MHC-I) proteins on the surface of human ES cells that moderately increase on in vitro or in vivo differentiation. A dramatic induction of MHC-I proteins was observed when the cells were treated with IFN-γ but not with IFN-α or -β. However, all three IFNs induced expression of MHC-I proteins in differentiated human ES cells. MHC-II proteins and HLA-G were not expressed on the surface of undifferentiated or differentiated cells. Ligands for natural killer cell receptors were either absent or expressed in very low levels in human ES cells and in their differentiated derivatives. In accordance, natural killer cytotoxic assays demonstrated only limited lysis of both undifferentiated and differentiated cells. To initiate a histocompatibility databank of human ES cells, we have isotyped several of the published ES cell lines for their human leukocyte antigens. In conclusion, our results demonstrate that human ES cells can express high levels of MHC-I proteins and thus may be rejected on transplantation.


Brain Research | 2001

Induced neuronal differentiation of human embryonic stem cells

Maya Schuldiner; Rachel Eiges; Amir Eden; Ofra Yanuka; Joseph Itskovitz-Eldor; Ronald S. Goldstein; Nissim Benvenisty

Human embryonic stem (ES) cells are pluripotent cells capable of forming differentiated embryoid bodies (EBs) in culture. We examined the ability of growth factors under controlled conditions to increase the number of human ES cell-derived neurons. Retinoic acid (RA) and nerve growth factor (betaNGF) were found to be potent enhancers of neuronal differentiation, eliciting extensive outgrowth of processes and the expression of neuron-specific molecules. Our findings show that human ES cells have great potential to become an unlimited cell source for neurons in culture. These cells may then be used in transplantation therapies for neural pathologies.


Science | 2009

Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum.

Martin C. Jonikas; Sean R. Collins; Vladimir Denic; Eugene Oh; Erin M. Quan; Volker Schmid; Jimena Weibezahn; Blanche Schwappach; Peter Walter; Jonathan S. Weissman; Maya Schuldiner

Protein folding in the endoplasmic reticulum is a complex process whose malfunction is implicated in disease and aging. By using the cells endogenous sensor (the unfolded protein response), we identified several hundred yeast genes with roles in endoplasmic reticulum folding and systematically characterized their functional interdependencies by measuring unfolded protein response levels in double mutants. This strategy revealed multiple conserved factors critical for endoplasmic reticulum folding, including an intimate dependence on the later secretory pathway, a previously uncharacterized six-protein transmembrane complex, and a co-chaperone complex that delivers tail-anchored proteins to their membrane insertion machinery. The use of a quantitative reporter in a comprehensive screen followed by systematic analysis of genetic dependencies should be broadly applicable to functional dissection of complex cellular processes from yeast to human.


Current Biology | 2001

Establishment of human embryonic stem cell-transfected clones carrying a marker for undifferentiated cells

Rachel Eiges; Maya Schuldiner; Micha Drukker; Ofra Yanuka; Joseph Itskovitz-Eldor; Nissim Benvenisty

Human embryonic stem (ES) cells are pluripotent cell lines that have been derived from the inner cell mass (ICM) of blastocyst stage embryos [1--3]. They are characterized by their ability to be propagated indefinitely in culture as undifferentiated cells with a normal karyotype and can be induced to differentiate in vitro into various cell types [1, 2, 4-- 6]. Thus, human ES cells promise to serve as an unlimited cell source for transplantation. However, these unique cell lines tend to spontaneously differentiate in culture and therefore are difficult to maintain. Furthermore, colonies may contain several cell types and may be composed of cells other than pluripotent cells [1, 2, 6]. In order to overcome these difficulties and establish lines of cells with an undifferentiated phenotype, we have introduced a reporter gene that is regulated by a promoter of an ES cell-enriched gene into the cells. For the introduction of DNA into human ES cells, we have established a specific transfection protocol that is different from the one used for murine ES cells. Human ES cells were transfected with enhanced green fluorescence protein (EGFP), under the control of murine Rex1 promoter. The transfected cells show high levels of GFP expression when in an undifferentiated state. As the cells differentiate, this expression is dramatically reduced in monolayer cultures as well as in the primitive endoderm of early stage (simple) embryoid bodies (EBs) and in mature EBs. The undifferentiated cells expressing GFP can be analyzed and sorted by using a Fluorescence Activated Cell Sorter (FACS). Thus, we have established lines of human ES cells in which only undifferentiated cells are fluorescent, and these cells can be followed and selected for in culture. We also propose that the pluripotent nature of the culture is made evident by the ability of the homogeneous cell population to form EBs. The ability to efficiently transfect human ES cells will provide the means to study and manipulate these cells for the purpose of basic and applied research.


Nature Methods | 2008

A comprehensive strategy enabling high-resolution functional analysis of the yeast genome

David K. Breslow; Dale Matthew Cameron; Sean R. Collins; Maya Schuldiner; Jacob Stewart-Ornstein; Heather W Newman; Sigurd Braun; Hiten D. Madhani; Nevan J. Krogan; Jonathan S. Weissman

Functional genomic studies in Saccharomyces cerevisiae have contributed enormously to our understanding of cellular processes. Their full potential, however, has been hampered by the limited availability of reagents to systematically study essential genes and the inability to quantify the small effects of most gene deletions on growth. Here we describe the construction of a library of hypomorphic alleles of essential genes and a high-throughput growth competition assay to measure fitness with unprecedented sensitivity. These tools dramatically increase the breadth and precision with which quantitative genetic analysis can be performed in yeast. We illustrate the value of these approaches by using genetic interactions to reveal new relationships between chromatin-modifying factors and to create a functional map of the proteasome. Finally, by measuring the fitness of strains in the yeast deletion library, we addressed an enigma regarding the apparent prevalence of gene dispensability and found that most genes do contribute to growth.


Cell | 2008

The GET Complex Mediates Insertion of Tail-Anchored Proteins into the ER Membrane

Maya Schuldiner; Jutta Metz; Volker Schmid; Vladimir Denic; Magdalena Rakwalska; Hans Dieter Schmitt; Blanche Schwappach; Jonathan S. Weissman

Summary Tail-anchored (TA) proteins, defined by the presence of a single C-terminal transmembrane domain (TMD), play critical roles throughout the secretory pathway and in mitochondria, yet the machinery responsible for their proper membrane insertion remains poorly characterized. Here we show that Get3, the yeast homolog of the TA-interacting factor Asna1/Trc40, specifically recognizes TMDs of TA proteins destined for the secretory pathway. Get3 recognition represents a key decision step, whose loss can lead to misinsertion of TA proteins into mitochondria. Get3-TA protein complexes are recruited for endoplasmic reticulum (ER) membrane insertion by the Get1/Get2 receptor. In vivo, the absence of Get1/Get2 leads to cytosolic aggregation of Get3-TA complexes and broad defects in TA protein biogenesis. In vitro reconstitution demonstrates that the Get proteins directly mediate insertion of newly synthesized TA proteins into ER membranes. Thus, the GET complex represents a critical mechanism for ensuring efficient and accurate targeting of TA proteins.

Collaboration


Dive into the Maya Schuldiner's collaboration.

Top Co-Authors

Avatar

Silvia G. Chuartzman

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Uri Weill

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tslil Ast

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Ido Yofe

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Joseph Itskovitz-Eldor

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Michal Breker

Weizmann Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge