Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maya Sharma is active.

Publication


Featured researches published by Maya Sharma.


ACS Applied Materials & Interfaces | 2014

Poly(vinylidene fluoride)-Based Flexible and Lightweight Materials for Attenuating Microwave Radiations

Maya Sharma; Mahander Pratap Singh; Chandan Srivastava; Giridhar Madras; Suryasarathi Bose

Two unique materials were developed, like graphene oxide (GO) sheets covalently grafted on to barium titanate (BT) nanoparticles and cobalt nanowires (Co-NWs), to attenuate the electromagnetic (EM) radiations in poly(vinylidene fluoride) (PVDF)-based composites. The rationale behind using either a ferroelectric or a ferromagnetic material in combination with intrinsically conducting nanoparticles (multiwall carbon nanotubes, CNTs), is to induce both electrical and magnetic dipoles in the system. Two key properties, namely, enhanced dielectric constant and magnetic permeability, were determined. PVDF/BT-GO composites exhibited higher dielectric constant compared to PVDF/BT and PVDF/GO composites. Co-NWs, which were synthesized by electrodeposition, exhibited saturation magnetization (Ms) of 40 emu/g and coercivity (Hc) of 300 G. Three phase hybrid composites were prepared by mixing CNTs with either BT-GO or Co-NWs in PVDF by solution blending. These nanoparticles showed high electrical conductivity and significant attenuation of EM radiations both in the X-band and in the Ku-band frequency. In addition, BT-GO/CNT and Co-NWs/CNT particles also enhanced the thermal conductivity of PVDF by ca. 8.7- and 9.3-fold in striking contrast to neat PVDF. This study open new avenues to design flexible and lightweight electromagnetic interference shielding materials by careful selection of functional nanoparticles.


Materials Research Express | 2014

Flexible EMI shielding materials derived by melt blending PVDF and ionic liquid modified MWNTs

Maya Sharma; Sukanya Sharma; Jiji Abraham; Sabu Thomas; Giridhar Madras; Suryasarathi Bose

Nano composites of PVDF with ionic liquid [EMIM][TF2N] (IL) modified MWNTs were prepared by melt blending to design materials for EMI shielding applications. MWNTs and IL were mixed in two different ratios (1:1 and 1:5) to facilitate better dispersion of MWNTs in PVDF. It was observed that non-covalent interactions between IL and PVDF resulted in a better dispersion of CNTs and was consistent with increasing concentration of IL. Interestingly, IL modified MWNTs induced the formation of γ-phase crystals in PVDF, which was further confirmed by XRD, FTIR and DSC. Melt rheological measurements and DSC analysis revealed the plasticization effect of IL in PVDF composites further manifesting in a decrease in the storage modulus and the glass transition temperature. This phenomenal effect presumably led to better dispersion of IL modified MWNTs in PVDF further resulting in a significant improvement in electrical conductivity and structural properties. More interestingly, the elongational properties in the composites improved with IL modified MWNTs in striking contrast to MWNT filled PVDF composites. The ac conductivity of the composites reached about 10−3 S cm−1 with the addition of 2 wt% IL modified MWNTs (1:1). This further led to a high electro-magnetic interference (EMI) shielding effectiveness of about 20 dB at 2 wt% IL modified MWNTs. Such materials can further be explored for flexible, lightweight EMI shielding materials for a wide range of operating frequency.


RSC Advances | 2016

Outstanding dielectric constant and piezoelectric coefficient in electrospun nanofiber mats of PVDF containing silver decorated multiwall carbon nanotubes: assessing through piezoresponse force microscopy

Maya Sharma; Vijay Srinivas; Giridhar Madras; Suryasarathi Bose

In order to enhance the piezoelectric β-phase, PVDF was electrospun from DMF solution. The enhanced β-phase was discerned by comparing the electrospun fibers against the melt mixed samples. While both the processes resulted in phase transformation of α- to electroactive β-polymorph in PVDF, the fraction of β-phase was strongly dependent on the adopted process. Two different nanoscopic particles: carboxyl functionalized multiwall carbon nanotubes (CNTs) and silver (Ag) decorated CNTs were used to further enhance the piezoelectric coefficient in the electrospun fibers. Fourier transform infrared spectroscopy (FTIR) and wide-angle X-ray diffraction (XRD) supports the development of piezoelectric β-phase in PVDF. It was concluded that electrospinning was the best technique for inducing the β-polymorph in PVDF. This was attributed to the high voltage electrostatic field that generates extensional forces on the polymer chains that aligns the dipoles in one direction. The ferroelectric and piezoelectric measurement on electrospun fibers were studied using piezo-response force microscope (PFM). The Ag–CNTs filled PVDF electrospun fibers showed the highest piezoelectric coefficient (d33 = 54 pm V−1) in contrast to PVDF/CNT fibers (35 pm V−1) and neat PVDF (30 pm V−1). This study demonstrates that the piezoelectric coefficient can be enhanced significantly by electrospinning PVDF containing Ag decorated nanoparticles.


RSC Advances | 2015

Porous membranes designed from bi-phasic polymeric blends containing silver decorated reduced graphene oxide synthesized via a facile one-pot approach

Prasanna Kumar S Mural; Maya Sharma; Abhinaya Shukla; Sambhu Bhadra; Babu Padmanabhan; Giridhar Madras; Suryasarathi Bose

In this work, porous membranes were designed by selectively etching the PEO phase, by water, from a melt-mixed PE/PEO blend. The pure water flux and the resistance across the membrane were systematically evaluated by employing an indigenously developed cross flow membrane setup. Both the phase morphology and the cross sectional morphology of the membranes was assessed by scanning electron microscopy and an attempt was made to correlate the observed morphology with the membrane performance. In order to design antibacterial membranes for water purification, partially reduced graphene oxide (rGO), silver nanoparticles (Ag) and silver nanoparticles decorated with rGO (rGO-Ag) were synthesized and incorporated directly into the blends during melt mixing. The loss of viability of bacterial cells was determined by the colony counting method using E. coli as a model bacterium. SEM images display that the direct contact with the rGO-Ag nanoparticles disrupts the cell membrane. In addition, the rGO-Ag nanoparticles exhibited a synergistic effect with respect to bacterial cell viability in comparison to both rGO and Ag nanoparticles. The possible mechanism associated with the antibacterial activity in the membranes was discussed. This study opens new avenues in designing antibacterial membranes for water purification.


Journal of Materials Chemistry | 2015

Unique nanoporous antibacterial membranes derived through crystallization induced phase separation in PVDF/PMMA blends

Maya Sharma; Giridhar Madras; Suryasarathi Bose

In this study, a unique method was adopted to design porous membranes through crystallization induced phase separation in PVDF/PMMA (poly(vinylidene fluoride)/poly(methyl methacrylate)) blends. By etching out PMMA, which segregates either in the interlamellar and/or in the interspherulitic regions of the blends, nanoporous hierarchical structures can be derived. Different nanoparticles like titanium dioxide (TiO2), silver nanoparticle (Ag) decorated carbon nanotubes (Ag-CNTs), TiO2 decorated CNTs (TiO2-CNTs), Ag decorated TiO2 (Ag-TiO2) and Ag-TiO2 decorated CNTs (Ag@TiO2-CNTs) were synthesized and melt mixed with 80/20 PVDF/PMMA blends to render antibacterial activity to the membranes. Scanning electron microscopy (SEM) was used to study the crystalline morphology of the membranes. A significant improvement in the trans-membrane flux was obtained in the blends with Ag@TiO2 decorated CNTs as compared to the membranes derived from the neat blends, which can be attributed to the interconnected pores in these membranes. Both qualitative and quantitative studies of antifouling and antibacterial activity (using E. coli as a model bacterium) were performed using the standard plate count method. SEM micrographs clearly showed that the antifouling activity of the membranes was improved with addition of Ag@TiO2-CNTs. In the quantitative standard plate count method, the bacterial colony significantly decreased with the addition of Ag@TiO2-CNTs as against neat blends. This study opens a new avenue in the fabrication of polymer blend based membranes for water filtration.


RSC Advances | 2015

Polyvinylidene fluoride based lightweight and corrosion resistant electromagnetic shielding materials

Viraj Bhingardive; Maya Sharma; Satyam Suwas; Giridhar Madras; Suryasarathi Bose

Various NixCo1−x alloys (with x varying from 0–60 wt%, Ni: nickel, Co: cobalt) were prepared by vacuum arc melting and mixed with polyvinylidene fluoride (PVDF) to design lightweight, flexible and corrosion resistant materials that can attenuate electromagnetic radiation. The saturation magnetization scaled with the fraction of Co in the alloy. Two key properties such as high-magnetic permeability and high-electrical conductivity were targeted. While the former was achieved using a Ni–Co alloy, multiwalled carbon nanotubes (CNTs) in the composites accomplished the latter. A unique approach was adopted to prepare the composites wherein PVDF powder along with CNTs and Ni–Co flakes were made into a paste, using a solvent, followed by hot pressing. Interestingly, CNTs facilitated in uniform dispersion of the Ni–Co alloy in PVDF, as manifested from synergistic improvement in the electrical conductivity. A significant improvement in the shielding effectiveness (41 dB, >99.99% attenuation) was achieved with the addition of 50 wt% of Ni40Co60 alloy and 3 wt% CNTs. Intriguingly, due to the unique processing technique adopted here, the flexibility of the composites was retained and more interestingly, the composites were resistant to corrosion as compared to only Ni–Co alloy.


RSC Advances | 2015

A critical review on in situ reduction of graphene oxide during preparation of conducting polymeric nanocomposites

Prasanna Kumar S Mural; Maya Sharma; Giridhar Madras; Suryasarathi Bose

Graphene oxide (GO), prepared by chemical oxidation of graphite, serves as a building block for developing polymeric nanocomposites. However, their application in electrical conductivity is limited by the fact that the oxygen sites on GO trap electrons and impede charge transport. Conducting nanocomposites can be developed by reducing GO. Various strategies have been adopted to either reduce GO ex situ, before the composite preparation, or in situ during the development of the nanocomposites. The current state of research on in situ reduction of GO during the preparation of conducting polymeric nanocomposites is discussed in this review. The mechanism and the efficiency of reduction is discussed with respect to various strategies employed during the preparation of the nanocomposite, the type of polymer used, and the processing conditions employed, etc. Its overall effect on the electrical conductivity of the nanocomposites is also discussed and the future outlook in this area is presented.


RSC Advances | 2016

A strategy to achieve enhanced electromagnetic interference shielding at ultra-low concentration of multiwall carbon nanotubes in PαMSAN/PMMA blends in the presence of a random copolymer PS-r-PMMA

Suryasarathi Bose; Maya Sharma; Avanish Bharati; Paula Moldenaers; Ruth Cardinaels

A unique strategy was adopted to achieve an ultra-low electrical percolation threshold of multiwall carbon nanotubes (MWNTs) (0.25 wt%) in a classical partially miscible blend of poly-α-methylstyrene-co-acrylonitrile and poly(methyl methacrylate) (PαMSAN/PMMA), with a lower critical solution temperature. The polymer blend nanocomposite was prepared by standard melt-mixing followed by annealing above the phase separation temperature. In a two-step mixing protocol, MWNTs were initially melt-mixed with a random PS-r-PMMA copolymer and subsequently diluted with 85/15 PαMSAN/PMMA blends in the next mixing step. Mediated by the PS-r-PMMA, the MWNTs were mostly localized at the interface and bridged the PMMA droplets. This strategy led to enhanced electromagnetic interference (EMI) shielding effectiveness at 0.25 wt% MWNTs through multiple scattering from MWNT-covered droplets, as compared to the blends without the copolymer, which were transparent to electromagnetic radiation.


Materials Research Express | 2014

Zirconia doped barium titanate induced electroactive β polymorph in PVDF-HFP: high energy density and dielectric properties

Maya Sharma; S Ranganatha; Ajay Kumar Kalyani; Rajeev Ranjan; Giridhar Madras; Suryasarathi Bose

Zirconium-doped barium titanate (BZT-08, Ba(Ti0.92 Zr0.08)O3) particles were synthesized and PVDF-HFP-based composites were prepared by melt mixing to design materials with tunable dielectric and ferroelectric properties. Composites of PVDF-HFP and barium titanate (BT) particles were also prepared to realize the exceptional properties associated with the BZT-08-like stabilization of two ferroelectric phases, i.e. tetragonal and orthorhombic at room temperature. To facilitate the uniform dispersion and interfacial adhesion with the matrix, the particles were modified with (3-aminopropyl) triethoxysilane. The dependence of the dielectric and ferroelectric properties of the as-prepared composites were systematically investigated in this study with respect to a wide range of frequencies. The composites with BZT-08 exhibited the significantly high dielectric permittivity of ca. 26 (at 100 Hz) and a high energy density (2.7 J cm−3 measured on 100 μm thick film) at room temperature with respect to the control PVDF-HFP and PVDF-HFP/BT composites. Interestingly, the BZT-08 particles facilitated the electroactive β polymorph in the PVDF-HFP and enhanced polarization in the composites, leading to improved ferroelectric properties in the composites.


Materials Research Express | 2016

PVDF membranes containing hybrid nanoparticles for adsorbing cationic dyes: physical insights and mechanism

Maya Sharma; Giridhar Madras; Suryasarathi Bose

In this study, Fe (iron) and Ag (silver) based adsorbents were synthesized using solution combustion and in situ reduction techniques. The synthesized adsorbents were comprehensively characterized by different techniques including electron microscopy, BET, XRD, Zeta potential etc. Three chlorinated cationic dyes used were malachite green, methyl violet and pyronin Y. These dyes were adsorbed on various synthesized adsorbents iron III oxide (Fe2O3)], iron III oxide decorated silver nanoparticles by combustion synthesis technique Fe2O3-Ag(C)] and iron III oxide decorated silver nanoparticles using in situ reduction, Fe2O3-Ag (S)]. The isotherm and the adsorption kinetics have been studied systematically. The kinetic data can be explained by the pseudo second order model and the adsorption equilibrium followed Langmuir isotherm. The equilibrium and kinetics results suggest that Fe2O3-Ag(S) nanoparticles showed the maximum adsorption among all the adsorbents. Hence, Polyvinylidene fluoride based membranes containing Fe2O3-Ag(S) nanoparticles were prepared via phase inversion (precipitation immersion usingDMF/water) technique. The adsorption kinetics were studied in detail and it was observed that the composite membrane showed synergistic improvement in dye adsorption. Such membranes can be used for water purification.

Collaboration


Dive into the Maya Sharma's collaboration.

Top Co-Authors

Avatar

Suryasarathi Bose

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Giridhar Madras

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Sanjay Remanan

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keshav Sharma

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Satyam Suwas

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Abhinaya Shukla

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Aishwarya V. Menon

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Ajay Kumar Kalyani

Indian Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge