Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maya Zigler is active.

Publication


Featured researches published by Maya Zigler.


Cancer Research | 2008

Targeting melanoma growth and metastasis with systemic delivery of liposome-incorporated protease-activated receptor-1 small interfering RNA.

Gabriel J. Villares; Maya Zigler; Hua Wang; Vladislava O. Melnikova; Hong Wu; Ran Friedman; Michael Leslie; Pablo Vivas-Mejia; Gabriel Lopez-Berestein; Anil K. Sood; Menashe Bar-Eli

The thrombin receptor [protease-activated receptor-1 (PAR-1)] is overexpressed in highly metastatic melanoma cell lines and in patients with metastatic lesions. Activation of PAR-1 leads to cell signaling and up-regulation of genes involved in adhesion, invasion, and angiogenesis. Herein, we stably silence PAR-1 through the use of lentiviral short hairpin RNA and found significant decreases in both tumor growth (P < 0.01) and metastasis (P < 0.001) of highly metastatic melanoma cell lines in vivo. The use of viruses for therapy is not ideal as it can induce toxic immune responses and possible gene alterations following viral integration. Therefore, we also used systemic delivery of PAR-1 small interfering RNA (siRNA) incorporated into neutral liposomes [1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC)] to decrease melanoma growth and metastasis in vivo. Significant decreases in tumor growth, weight, and metastatic lung colonies (P < 0.001 for all) were found in mice treated with PAR-1 siRNA-DOPC. The in vivo effects of PAR-1 on invasion and angiogenesis were analyzed via immunohistochemistry. Concomitant decreases in vascular endothelial growth factor, interleukin-8, and matrix metalloproteinase-2 expression levels, as well as decreased blood vessel density (CD31), were found in tumor samples from PAR-1 siRNA-treated mice, suggesting that PAR-1 is a regulator of melanoma cell growth and metastasis by affecting angiogenic and invasive factors. We propose that siRNA incorporated into DOPC nanoparticles could be delivered systemically and used as a new modality for melanoma treatment.


Nature Communications | 2013

Src activation by adrenoreceptors is a key switch for tumour metastasis

Guillermo N. Armaiz-Pena; Julie K. Allen; Anthony Cruz; Rebecca L. Stone; Alpa M. Nick; Yvonne G. Lin; Liz Y. Han; Lingegowda S. Mangala; Gabriel J. Villares; Pablo Vivas-Mejia; Cristian Rodriguez-Aguayo; Archana S. Nagaraja; Kshipra M. Gharpure; Zheng Wu; Robert D. English; Kizhake V. Soman; Mian M.K. Shahzad; Maya Zigler; Michael T. Deavers; Alexander Zien; Theodoros Soldatos; David B. Jackson; John E. Wiktorowicz; Madeline Torres-Lugo; Tom Young; Koen De Geest; Gary E. Gallick; Menashe Bar-Eli; Gabriel Lopez-Berestein; Steve W. Cole

Norepinephrine (NE) can modulate multiple cellular functions important for cancer progression; however, how this single extracellular signal regulates such a broad array of cellular processes is unknown. Here, we identify Src as a key regulator of phosphoproteomic signaling networks activated in response to beta-adrenergic signaling in cancer cells. These results also identify a new mechanism of Src phosphorylation that mediates beta-adrenergic/PKA regulation of downstream networks, thereby enhancing tumor cell migration, invasion and growth. In human ovarian cancer samples, high tumoral NE levels were correlated with high pSrcY419 levels. Moreover, among cancer patients, the use of beta blockers was significantly associated with reduced cancer-related mortality. Collectively, these data provide a pivotal molecular target for disrupting neural signaling in the tumor microenvironment.


Cancer Research | 2008

A Subset of Host B Lymphocytes Controls Melanoma Metastasis through a Melanoma Cell Adhesion Molecule/MUC18-Dependent Interaction: Evidence from Mice and Humans

Fernanda I. Staquicini; Anita Tandle; Steven K. Libutti; Jessica Sun; Maya Zigler; Menashe Bar-Eli; Fabiana Aliperti; Elizabeth Cristina Perez; Jeffrey E. Gershenwald; Mario Mariano; Renata Pasqualini; Wadih Arap; José Daniel Lopes

Host immunity affects tumor metastasis but the corresponding cellular and molecular mechanisms are not entirely clear. Here, we show that a subset of B lymphocytes (termed B-1 population), but not other lymphocytes, has prometastatic effects on melanoma cells in vivo through a direct heterotypic cell-cell interaction. In the classic B16 mouse melanoma model, one mechanism underlying this phenomenon is a specific up-regulation and subsequent homophilic interaction mediated by the cell surface glycoprotein MUC18 (also known as melanoma cell adhesion molecule). Presence of B-1 lymphocytes in a panel of tumor samples from melanoma patients directly correlates with MUC18 expression in melanoma cells, indicating that the same protein interaction exists in humans. These results suggest a new but as yet unrecognized functional role for host B-1 lymphocytes in tumor metastasis and establish a biochemical basis for such observations. Our findings support the counterintuitive central hypothesis in which a primitive layer of the immune system actually contributes to tumor progression and metastasis in a mouse model and in melanoma patients. Given that monoclonal antibodies against MUC18 are in preclinical development but the reason for their antitumor activity is not well understood, these translational results are relevant in the setting of human melanoma and perhaps of other cancers.


Journal of Biological Chemistry | 2009

Silencing cAMP-response Element-binding Protein (CREB) Identifies CYR61 as a Tumor Suppressor Gene in Melanoma

Andrey S. Dobroff; Hua Wang; Vladislava O. Melnikova; Gabriel J. Villares; Maya Zigler; Li Huang; Menashe Bar-Eli

Metastatic progression of melanoma is associated with overexpression and activity of cAMP-response element-binding protein (CREB). However, the mechanism by which CREB contributes to tumor progression and metastasis remains unclear. Here, we demonstrate that stably silencing CREB expression in two human metastatic melanoma cell lines, A375SM and C8161-c9, suppresses tumor growth and experimental metastasis. Analysis of cDNA microarrays revealed that CREB silencing leads to increased expression of cysteine-rich protein 61 (CCN1/CYR61) known to mediate adhesion, chemostasis, survival, and angiogenesis. Promoter analysis and chromatin immunoprecipitation assays demonstrated that CREB acts as a negative regulator of CCN1/CYR61 transcription by directly binding to its promoter. Re-expression of CREB in CREB-silenced cells rescued the low CCN1/CYR61 expression phenotype. CCN1/CYR61 overexpression resulted in reduced tumor growth and metastasis and inhibited the activity of matrix metalloproteinase-2. Furthermore, its overexpression decreased melanoma cell motility and invasion through Matrigel, which was abrogated by silencing CCN1/CYR61 in low metastatic melanoma cells. Moreover, a significant decrease in angiogenesis as well as an increase in apoptosis was seen in tumors overexpressing CCN1/CYR61. Our results demonstrate that CREB promotes melanoma growth and metastasis by down-regulating CCN1/CYR61 expression, which acts as a suppressor of melanoma cell motility, invasion and angiogenesis.


Journal of Biological Chemistry | 2009

Crosstalk between protease-activated receptor 1 and platelet-activating factor receptor regulates melanoma cell adhesion molecule (MCAM/MUC18) expression and melanoma metastasis.

Vladislava O. Melnikova; Krishnakumar Balasubramanian; Gabriel J. Villares; Andrey S. Dobroff; Maya Zigler; Hua Wang; Frederik Petersson; Janet E. Price; Alan J. Schroit; Victor G. Prieto; Mien Chie Hung; Menashe Bar-Eli

The cellular and molecular pathways that regulate platelet activation, blood coagulation, and inflammation are emerging as critical players in cancer progression and metastasis. Here, we demonstrate a novel signaling mechanism whereby protease-activated receptor 1 (PAR1) mediates expression of melanoma cell adhesion molecule MCAM/MUC18 (MUC18), a critical marker of melanoma metastasis, via activation of platelet-activating factor receptor (PAFR) and cAMP-responsive element-binding protein (CREB). We found that PAR1 silencing with small hairpin RNA inhibits MUC18 expression in metastatic melanoma cells by inhibiting CREB phosphorylation, activity, and binding to the MUC18 promoter. We further demonstrate that the PAF/PAFR pathway mediates MUC18 expression downstream of PAR1. Indeed, PAR1 silencing down-regulates PAFR expression and PAF production, PAFR silencing blocks MUC18 expression, and re-expression of PAFR in PAR1-silenced cells rescues MUC18 expression. We further demonstrate that the PAR1-PAFR-MUC18 pathway mediates melanoma cell adhesion to microvascular endothelial cells, transendothelial migration, and metastatic retention in the lungs. Rescuing PAFR expression in PAR1-silenced cells fully restores metastatic phenotype of melanoma, indicating that PAFR plays critical role in the molecular mechanism of PAR1 action. Our results link the two pro-inflammatory G-protein-coupled receptors, PAR1 and PAFR, with the metastatic dissemination of melanoma and suggest that PAR1, PAFR, and MUC18 are attractive therapeutic targets for preventing melanoma metastasis.


Cancer Research | 2011

PAR-1 and Thrombin: The Ties That Bind the Microenvironment to Melanoma Metastasis

Maya Zigler; Takafumi Kamiya; Emily C. Brantley; Gabriel J. Villares; Menashe Bar-Eli

Progression of melanoma is dependent on cross-talk between tumor cells and the adjacent microenvironment. The thrombin receptor, protease-activated receptor-1 (PAR-1), plays a key role in exerting this function during melanoma progression. PAR-1 and its activating factors, which are expressed on tumor cells and the surrounding stroma, induce not only coagulation but also cell signaling, which promotes the metastatic phenotype. Several adhesion molecules, cytokines, growth factors, and proteases have recently been identified as downstream targets of PAR-1 and have been shown to modulate interactions between tumor cells and the microenvironment in the process of melanoma growth and metastasis. Inhibiting such interactions by targeting PAR-1 could potentially be a useful therapeutic modality for melanoma patients.


American Journal of Clinical Dermatology | 2008

Tumor immunotherapy in melanoma: strategies for overcoming mechanisms of resistance and escape.

Maya Zigler; Gabriel J. Villares; Dina Lev; Vladislava O. Melnikova; Menashe Bar-Eli

The incidence of melanoma has been steadily increasing over the last 3 decades. Currently, there are several approved treatments for metastatic melanoma, including chemotherapy and biologic therapy as both single treatments and in combination, but none is associated with a significant increase in survival. The chemotherapeutic agent dacarbazine is the standard treatment for metastatic melanoma, with a response rate of 15–20%, although most responses are not sustained. One of the main problems with melanoma treatment is chemotherapeutic resistance. The mechanisms of resistance of melanoma cells to chemotherapy have yet to be elucidated. Following treatment with dacarbazine, melanoma cells activate the extracellular signal-regulated kinase pathway, which results in over-expression and secretion of interleukin (IL)-8 and vascular endothelial growth factor. Melanoma cells utilize this mechanism to escape from the cytotoxic effect of the drug. We have previously reported on the development of fully human neutralizing antibodies against IL-8 (anti-IL-8-monoclonalantibody [ABX-IL8]). In preclinical studies, ABX-IL8 inhibited tumor growth, angiogenesis, and metastasis of human melanoma in vivo. We propose that combination treatment with dacarbazine and IL-8 will potentiate the cytotoxic effect of the drug. Furthermore, formation of metastasis is a multistep process that includes melanoma cell adhesion to endothelial cells. Melanoma cell adhesion molecule (MUC18) mediates these processes in melanoma and is therefore a good target for eliminating metastasis. We have developed a fully human antibody against MUC18 that has shown promising results in preclinical studies. Since resistance is one of the major obstacles in the treatment of melanoma, we propose that utilization of antibodies against IL-8 or MUC18 alone, or as part of a ‘cocktail’ in combination with dacarbazine, may be a new treatment modality for metastatic melanoma that overcomes resistance of the disease to chemotherapy and significantly improves survival of patients.


Cancer Research | 2012

Galectin-3 Contributes to Melanoma Growth and Metastasis via Regulation of NFAT1 and Autotaxin

Russell R. Braeuer; Maya Zigler; Takafumi Kamiya; Andrey S. Dobroff; Li Huang; Woonyoung Choi; David J. McConkey; Einav Shoshan; Aaron K. Mobley; Renduo Song; Avraham Raz; Menashe Bar-Eli

Melanoma is the deadliest form of skin cancer in which patients with metastatic disease have a 5-year survival rate of less than 10%. Recently, the overexpression of a β-galactoside binding protein, galectin-3 (LGALS3), has been correlated with metastatic melanoma in patients. We have previously shown that silencing galectin-3 in metastatic melanoma cells reduces tumor growth and metastasis. Gene expression profiling identified the protumorigenic gene autotaxin (ENPP2) to be downregulated after silencing galectin-3. Here we report that galectin-3 regulates autotaxin expression at the transcriptional level by modulating the expression of the transcription factor NFAT1 (NFATC2). Silencing galectin-3 reduced NFAT1 protein expression, which resulted in decreased autotaxin expression and activity. Reexpression of autotaxin in galectin-3 silenced melanoma cells rescues angiogenesis, tumor growth, and metastasis in vivo. Silencing NFAT1 expression in metastatic melanoma cells inhibited tumor growth and metastatic capabilities in vivo. Our data elucidate a previously unidentified mechanism by which galectin-3 regulates autotaxin and assign a novel role for NFAT1 during melanoma progression.


Cancer Research | 2009

Overexpression of protease-activated receptor-1 contributes to melanoma metastasis via regulation of connexin 43.

Gabriel J. Villares; Andrey S. Dobroff; Hua Wang; Maya Zigler; Vladislava O. Melnikova; Li Huang; Menashe Bar-Eli

Protease-activated receptor-1 (PAR-1) is a key player in melanoma metastasis with higher expression seen in metastatic melanoma cell lines and tissue specimens. cDNA microarray and Western blot analyses reveal that the gap junctional intracellular communication molecule connexin 43 (Cx-43), known to be involved in tumor cell diapedesis and attachment to endothelial cells, is significantly decreased after PAR-1 silencing in metastatic melanoma cell lines. Furthermore, Cx-43 promoter activity was significantly inhibited in PAR-1-silenced cells, suggesting that PAR-1 regulates Cx-43 at the transcriptional level. Chromatin immunoprecipitation studies showed a reduction in the binding of SP-1 and AP-1 transcription factors to the promoter of Cx-43. Both transcription factors have been shown previously to be required for maximal Cx-43 promoter activity. These results were corroborated by mutating the AP-1 and SP-1 binding sites resulting in decreased Cx-43 promoter activity in PAR-1-positive cells. Moreover, as Cx-43 has been shown to facilitate arrest of circulating tumor cells at the vascular endothelium, melanoma cell attachment to endothelial cells was significantly decreased in PAR-1-silenced cells, with this effect being abrogated after PAR-1 rescue. Herein, we report that up-regulation of PAR-1 expression, seen in melanoma progression, mediates high levels of Cx-43 expression. As both SP-1 and AP-1 transcription factors act as positive regulators of Cx-43, our data provide a novel mechanism for the regulation of Cx-43 expression by PAR-1. Indeed, Cx-43 expression was restored following PAR-1 rescue in PAR-1-silenced cells. Taken together, our data support the tumor promoting function of Cx-43 in melanoma.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Protease activated receptor-1 inhibits the Maspin tumor-suppressor gene to determine the melanoma metastatic phenotype

Gabriel J. Villares; Maya Zigler; Andrey S. Dobroff; Hua Wang; Renduo Song; Vladislava O. Melnikova; Li Huang; Russell R. Braeuer; Menashe Bar-Eli

The thrombin receptor protease activated receptor-1 (PAR-1) is overexpressed in metastatic melanoma cell lines and tumor specimens. Previously, we demonstrated a significant reduction in tumor growth and experimental lung metastasis after PAR-1 silencing via systemic delivery of siRNA encapsulated into nanoliposomes. Gene expression profiling identified a 40-fold increase in expression of Maspin in PAR-1–silenced metastatic melanoma cell lines. Maspin promoter activity was significantly increased after PAR-1 silencing, suggesting that PAR1 negatively regulates Maspin at the transcriptional level. ChIP analyses revealed that PAR-1 decreases binding of Ets-1 and c-Jun transcription factors to the Maspin promoter, both known to activate Maspin transcription. PAR-1 silencing did not affect Ets-1 or c-Jun expression; rather it resulted in increased expression of the chromatin remodeling complex CBP/p300, as well as decreased activity of the CBP/p300 inhibitor p38, resulting in increased binding of Ets-1 and c-Jun to the Maspin promoter and higher Maspin expression. Functionally, Maspin expression reduced the invasive capability of melanoma cells after PAR-1 silencing, which was abrogated after rescuing with PAR-1. Furthermore, tumor growth and experimental lung metastasis was significantly decreased after expressing Maspin in a metastatic melanoma cell line. Moreover, silencing Maspin in PAR-1–silenced cells reverted the inhibition of tumor growth and experimental lung metastasis. Herein, we demonstrate a mechanism by which PAR-1 negatively regulates the expression of the Maspin tumor-suppressor gene in the acquisition of the metastatic melanoma phenotype, thus attributing an alternative function to PAR-1 other than coagulation.

Collaboration


Dive into the Maya Zigler's collaboration.

Top Co-Authors

Avatar

Menashe Bar-Eli

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Gabriel J. Villares

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hua Wang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Vladislava O. Melnikova

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Li Huang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Russell R. Braeuer

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Gabriel Lopez-Berestein

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alpa M. Nick

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge