Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mayana Zatz is active.

Publication


Featured researches published by Mayana Zatz.


Cell | 1995

Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A.

Isabelle Richard; Odile Broux; Valéerie Allamand; Françoise Fougerousse; Nuchanard Chiannilkulchai; Nathalie Bourg; L. Brenguier; Catherine Devaud; Patricia Pasturaud; Carinne Roudaut; Dominique Hillaire; Maria-Rita Passos-Bueno; Mayana Zatz; Jay A. Tischfield; Michel Fardeau; Charles E. Jackson; Daniel Cohen; Jacques S. Beckmann

Limb-girdle muscular dystrophies (LGMDs) are a group of inherited diseases whose genetic etiology has yet to be elucidated. The autosomal recessive forms (LGMD2) constitute a genetically heterogeneous group with LGMD2A mapping to chromosome 15q15.1-q21.1. The gene encoding the muscle-specific calcium-activated neutral protease 3 (CANP3) large subunit is located in this region. This cysteine protease belongs to the family of intracellular calpains. Fifteen nonsense, splice site, frameshift, or missense calpain mutations cosegregate with the disease in LGMD2A families, six of which were found within La Réunion island patients. A digenic inheritance model is proposed to account for the unexpected presence of multiple independent mutations in this small inbred population. Finally, these results demonstrate an enzymatic rather than a structural protein defect causing a muscular dystrophy, a defect that may have regulatory consequences, perhaps in signal transduction.


American Journal of Human Genetics | 2004

A Mutation in the Vesicle-Trafficking Protein VAPB Causes Late-Onset Spinal Muscular Atrophy and Amyotrophic Lateral Sclerosis

Agnes L. Nishimura; Miguel Mitne-Neto; Helga C. A. Silva; Antonio Richieri-Costa; Susan Middleton; Duilio Cascio; Fernando Kok; João Ricardo Mendes de Oliveira; Thomas H. Gillingwater; Jeanette Webb; Paul Skehel; Mayana Zatz

Motor neuron diseases (MNDs) are a group of neurodegenerative disorders with involvement of upper and/or lower motor neurons, such as amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), progressive bulbar palsy, and primary lateral sclerosis. Recently, we have mapped a new locus for an atypical form of ALS/MND (atypical amyotrophic lateral sclerosis [ALS8]) at 20q13.3 in a large white Brazilian family. Here, we report the finding of a novel missense mutation in the vesicle-associated membrane protein/synaptobrevin-associated membrane protein B (VAPB) gene in patients from this family. Subsequently, the same mutation was identified in patients from six additional kindreds but with different clinical courses, such as ALS8, late-onset SMA, and typical severe ALS with rapid progression. Although it was not possible to link all these families, haplotype analysis suggests a founder effect. Members of the vesicle-associated proteins are intracellular membrane proteins that can associate with microtubules and that have been shown to have a function in membrane transport. These data suggest that clinically variable MNDs may be caused by a dysfunction in intracellular membrane trafficking.


Stem Cells | 2008

MULTIPOTENT STEM CELLS FROM UMBILICAL CORD: CORD IS RICHER THAN BLOOD

Mariane Secco; Eder Zucconi; Natassia M. Vieira; Luciana L.Q. Fogaça; Antonia Cerqueira; Maria Fernanda Carvalho; Tatiana Jazedje; Oswaldo Keith Okamoto; Alysson R. Muotri; Mayana Zatz

The identification of mesenchymal stem cell (MSC) sources that are easily obtainable is of utmost importance. Several studies have shown that MSCs could be isolated from umbilical cord (UC) units. However, the presence of MSCs in umbilical cord blood (UCB) is controversial. A possible explanation for the low efficiency of MSCs from UCB is the use of different culture conditions by independent studies. Here, we compared the efficiency in obtaining MSCs from unrelated paired UCB and UC samples harvested from the same donors. Samples were processed simultaneously, under the same culture conditions. Although MSCs from blood were obtained from only 1 of the 10 samples, we were able to isolate large amounts of multipotent MSCs from all UC samples, which were able to originate different cell lineages. Since the routine procedure in UC banks has been to store the blood and discard other tissues, such as the cord and/or placenta, we believe our results are of immediate clinical value. Furthermore, the possibility of originating different cell lines from the UC of neonates born with genetic defects may provide new cellular research models for understanding human malformations and genetic disorders, as well as the possibility of testing the effects of different therapeutic drugs.


Nature Genetics | 2000

Limb-girdle muscular dystrophy type 2G is caused by mutations in the gene encoding the sarcomeric protein telethonin

Eloisa S. Moreira; Tim Wiltshire; Georgine Faulkner; Antje Nilforoushan; Mariz Vainzof; Oscar T. Suzuki; Giorgio Valle; Roger H. Reeves; Mayana Zatz; Maria Rita Passos-Bueno; Dieter E. Jenne

Autosomal recessive limb-girdle muscular dystrophies (AR LGMDs) are a genetically heterogeneous group of disorders that affect mainly the proximal musculature. There are eight genetically distinct forms of AR LGMD, LGMD 2A–H (refs 2–10), and the genetic lesions underlying these forms, except for LGMD 2G and 2H, have been identified. LGMD 2A and LGMD 2B are caused by mutations in the genes encoding calpain 3 (ref. 11) and dysferlin, respectively, and are usually associated with a mild phenotype. Mutations in the genes encoding γ-(ref. 14), α-(ref. 5), β-(refs 6,7) and δ (ref. 15)-sarcoglycans are responsible for LGMD 2C to 2F, respectively. Sarcoglycans, together with sarcospan, dystroglycans, syntrophins and dystrobrevin, constitute the dystrophin-glycoprotein complex (DGC). Patients with LGMD 2C–F predominantly have a severe clinical course. The LGMD 2G locus maps to a 3-cM interval in 17q11–12 in two Brazilian families with a relatively mild form of AR LGMD (ref. 9). To positionally clone the LGMD 2G gene, we constructed a physical map of the 17q11–12 region and refined its localization to an interval of 1.2 Mb. The gene encoding telethonin, a sarcomeric protein, lies within this candidate region. We have found that mutations in the telethonin gene cause LGMD 2G, identifying a new molecular mechanism for AR LGMD.


Cell Transplantation | 2010

Isolation, characterization, and differentiation potential of canine adipose-derived stem cells.

Natassia M. Vieira; V. Brandalise; Eder Zucconi; Mariane Secco; Bryan E. Strauss; Mayana Zatz

Adipose tissue may represent a potential source of adult stem cells for tissue engineering applications in veterinary medicine. It can be obtained in large quantities, under local anesthesia, and with minimal discomfort. In this study, canine adipose tissue was obtained by biopsy from subcutaneous adipose tissue or by suction-assisted lipectomy (i.e., liposuction). Adipose tissue was processed to obtain a fibroblast-like population of cells similar to human adipose-derived stem cells (hASCs). These canine adipose-derived stem cells (cASCs) can be maintained in vitro for extended periods with stable population doubling and low levels of senescence. Immunofluorescence and flow cytometry show that the majority of cASCs are of mesodermal or mesenchymal origin. cASCs are able to differentiate in vitro into adipogenic, chondrogenic, myogenic, and osteogenic cells in the presence of lineage-specific induction factors. In conclusion, like human lipoaspirate, canine adipose tissue may also contain multipotent cells and represent an important stem cell source both for veterinary cell therapy as well as preclinical studies.


Human Molecular Genetics | 2011

Downregulation of VAPB expression in motor neurons derived from induced pluripotent stem cells of ALS8 patients

Miguel Mitne-Neto; Marcela Machado-Costa; Maria C. Marchetto; Mario H. Bengtson; Claudio A. P. Joazeiro; Hiroshi Tsuda; Hugo J. Bellen; Helga Cristina Almeida da Silva; Acary Souza Bulle Oliveira; Monize Lazar; Alysson R. Muotri; Mayana Zatz

Amyotrophic lateral sclerosis (ALS) is an incurable neuromuscular disease that leads to a profound loss of life quality and premature death. Around 10% of the cases are inherited and ALS8 is an autosomal dominant form of familial ALS caused by mutations in the vamp-associated protein B/C (VAPB) gene. The VAPB protein is involved in many cellular processes and it likely contributes to the pathogenesis of other forms of ALS besides ALS8. A number of successful drug tests in ALS animal models could not be translated to humans underscoring the need for novel approaches. The induced pluripotent stem cells (iPSC) technology brings new hope, since it can be used to model and investigate diseases in vitro. Here we present an additional tool to study ALS based on ALS8-iPSC. Fibroblasts from ALS8 patients and their non-carrier siblings were successfully reprogrammed to a pluripotent state and differentiated into motor neurons. We show for the first time that VAPB protein levels are reduced in ALS8-derived motor neurons but, in contrast to over-expression systems, cytoplasmic aggregates could not be identified. Our results suggest that optimal levels of VAPB may play a central role in the pathogenesis of ALS8, in agreement with the observed reduction of VAPB in sporadic ALS.


Nature Genetics | 2013

Mutations in the gene encoding PDGF-B cause brain calcifications in humans and mice

Annika Keller; Ana Westenberger; María Jesús Sobrido; María García-Murias; Aloysius Domingo; Renee Sears; R. R. Lemos; Andrés Ordóñez-Ugalde; Gaël Nicolas; José Eriton Gomes da Cunha; Elisabeth J. Rushing; Michael Hugelshofer; Moritz C. Wurnig; Andres Kaech; Regina Reimann; Katja Lohmann; Valerija Dobricic; Angel Carracedo; Igor Petrović; Janis M Miyasaki; Irina Abakumova; Maarja Andaloussi Mäe; Elisabeth Raschperger; Mayana Zatz; Katja Zschiedrich; Jörg Klepper; Elizabeth Spiteri; José Manuel Prieto; Inmaculada Navas; Michael Preuss

Calcifications in the basal ganglia are a common incidental finding and are sometimes inherited as an autosomal dominant trait (idiopathic basal ganglia calcification (IBGC)). Recently, mutations in the PDGFRB gene coding for the platelet-derived growth factor receptor β (PDGF-Rβ) were linked to IBGC. Here we identify six families of different ancestry with nonsense and missense mutations in the gene encoding PDGF-B, the main ligand for PDGF-Rβ. We also show that mice carrying hypomorphic Pdgfb alleles develop brain calcifications that show age-related expansion. The occurrence of these calcium depositions depends on the loss of endothelial PDGF-B and correlates with the degree of pericyte and blood-brain barrier deficiency. Thus, our data present a clear link between Pdgfb mutations and brain calcifications in mice, as well as between PDGFB mutations and IBGC in humans.


American Journal of Human Genetics | 2007

Mutations in the KIAA0196 Gene at the SPG8 Locus Cause Hereditary Spastic Paraplegia

Paul N. Valdmanis; Inge A. Meijer; Annie Reynolds; Adrienne Lei; Patrick MacLeod; David Schlesinger; Mayana Zatz; Evan Reid; Patrick A. Dion; Pierre Drapeau; Guy A. Rouleau

Hereditary spastic paraplegia (HSP) is a progressive upper-motor neurodegenerative disease. The eighth HSP locus, SPG8, is on chromosome 8p24.13. The three families previously linked to the SPG8 locus present with relatively severe, pure spastic paraplegia. We have identified three mutations in the KIAA0196 gene in six families that map to the SPG8 locus. One mutation, V626F, segregated in three large North American families with European ancestry and in one British family. An L619F mutation was found in a Brazilian family. The third mutation, N471D, was identified in a smaller family of European origin and lies in a spectrin domain. None of these mutations were identified in 500 control individuals. Both the L619 and V626 residues are strictly conserved across species and likely have a notable effect on the structure of the protein product strumpellin. Rescue studies with human mRNA injected in zebrafish treated with morpholino oligonucleotides to knock down the endogenous protein showed that mutations at these two residues impaired the normal function of the KIAA0196 gene. However, the function of the 1,159-aa strumpellin protein is relatively unknown. The identification and characterization of the KIAA0196 gene will enable further insight into the pathogenesis of HSP.


European Journal of Human Genetics | 2001

High serum endostatin levels in Down syndrome: implications for improved treatment and prevention of solid tumours

Todd Zorick; Zan Mustacchi; Silvia Yumi Bando; Mayana Zatz; Carlos Alberto Moreira-Filho; BjoÈrn Olsen; Maria Rita Passos-Bueno

We report here a comparison of serum endostatin levels in Down syndrome patients to normal control subjects. We analysed serum samples from 35 patients with Down syndrome and 54 normal control subjects and found that although serum levels of endostatin vary widely in a normal human population, serum endostatin levels are significantly elevated in patients with Down syndrome. This result may explain the relative decrease in incidence of various solid tissue tumours observed in Down syndrome, given the role of endostatin as a potent inhibitor of tumour-induced angiogenesis in both human and animal models. Based upon these data, we propose that an increase of about one-third of normal endostatin serum levels may represent an effective therapeutic dose to significantly inhibit many solid tumours.


Journal of the Neurological Sciences | 1991

Serum creatine-kinase (CK) and pyruvate-kinase (PK) activities in Duchenne (DMD) as compared with Becker (BMD) muscular dystrophy

Mayana Zatz; Debora Rapaport; Mariz Vainzof; Maria Rita Passos-Bueno; Eliete Rabbi Bortolini; Rita C.M. Pavanello; Clovis A. Peres

Serum creatine-kinase (CK) activities were determined in 536 patients affected with X-linked muscular dystrophy (456 with Duchenne or DMD and 80 with Becker or BMD) and serum pyruvate-kinase (PK) in 360 among them (309 DMD and 51 BMD). The aim of this investigation was to assess the variability and rate of decrease in serum activity in DMD as compared with BMD as a function of age and in DMD as a function of Vignos scale as well. In DMD, maximum CK and PK activities were found around 1-6 years old and the average rate of decline according to age was estimated as 0.18 per year and 0.27-0.29 for both enzymes as a function of Vignos scale (assessed in 291 cases). For BMD, maximum serum enzyme levels were found around 10-15 years old and the rate of decline of serum activity per year was 0.06 for CK and 0.07 for PK. If maximum levels of serum enzyme reflect active muscle degeneration and the rate of decline per year to progressive loss of muscle mass (responsible for the release of muscle enzymes to the blood stream) our observations suggest: (a) active muscle degeneration occurs, on average, 5 years later in the group of outliers and 10 years later in BMD as compared with severe DMD; (b) the rate in which muscle mass is lost is significantly greater in DMD than in BMD and therefore serum enzyme determinations may represent an important test for evaluation of therapeutic trials; (c) serum enzymes determination may represent an important preliminary test to discriminate in a proportion of young patients if they will develop a severe or milder phenotype.

Collaboration


Dive into the Mayana Zatz's collaboration.

Top Co-Authors

Avatar

Mariz Vainzof

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eder Zucconi

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Mariane Secco

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paulo A. Otto

University of São Paulo

View shared research outputs
Researchain Logo
Decentralizing Knowledge