Mayank Modak
Indian Institute of Technology Indore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mayank Modak.
Experimental Heat Transfer | 2018
Mayank Modak; Avadhesh Kumar Sharma; Santosh K. Sahu
ABSTRACT The present article reports the heat transfer characteristics of a vertical stainless steel foil of 0.15 mm thickness (SS304) by circular impinging jets of various fluids such as pure water, nano-fluids (Al2O3-water, ф = 0.15%, 0.6%), and aqueous high-alcohol surfactant (HAS, i.e., 2-ethyl-hexanol, 100–400 ppm) studied using an infrared thermal imaging camera (A655sc, FLIR System). The enhancement in the heat transfer rates for Al2O3-water nano-fluids with ф = 0.15%, ф = 0.60%, and aqueous surfactant solution (150ppm) is found to be 140%, 207%, and 117% higher compared to pure water results, respectively. The surface characteristics of the foil after jet impingement by various fluids are also studied using scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and surface wettability.
Archive | 2017
Manish Kumar Agrawal; Mayank Modak; Santosh K. Sahu
In the present study, an experimental investigation has been carried out to analyze the effect of surfactant on heat transfer characteristics of a circular impinging liquid jet. A rectangular stainless steel foil (AISI-304, 0.15 mm thick), used as the target surface, was electrically heated to obtain the required initial temperature. A single-phase circular water jet of diameter 1.38 mm is allowed to impinge on the hot surface. Thermal images of the target surface during liquid jet impingement were recorded by using an infrared camera (A655sc, FLIR System) positioned on the side of the target surface opposite to the impinging nozzle. The distribution of heat flux on the target surface is evaluated from the recorded thermal images during transient cooling. Tests were performed for an initial surface temperature of 500 °C, Reynolds number (8893 ≤ Re ≤ 12847) and nozzle to plate distance was l/d = 2.5. Experiments have been performed using 2-Ethyl Hexanol added water solution at different concentration (0–400 ppm). Surface heat flux distribution during transient cooling of hot surface is obtained. It was observed that the surface heat flux increases with the rise in the jet Reynolds number and achieves its maximum at surfactant concentration of 200 ppm at stagnation point (6.2 MW/m2 at Re = 8893 to 6.5 MW/m2 at Re = 12847; 200 ppm).
Archive | 2017
Manish Kumar Agrawal; Mayank Modak; Palash Gupta; Satish Chandra; Santosh K. Sahu
In the present study, an experimental investigation has been carried out to analyze the effect of jet inclination on the heat transfer characteristics of a vertical hot surface during circular free impinging liquid jet. A rectangular stainless steel foil (AISI-304, 0.15 mm thick), used as the target surface, was electrically heated to an initial temperature of 400 °C. A single-phase circular water jet of diameter 1.38 mm is allowed to impinge on the hot surface. Infrared thermal camera (A655sc, FLIR System) is used to record the thermal images of the target surface during liquid jet impingement. The distribution of heat flux on the target surface is evaluated from the thermal images, recorded during transient cooling experiments. Tests were performed for an initial surface temperature of 400 °C, Reynolds number \(\left( {8893 \le Re \le 12847} \right)\), and nozzle to plate distance \(\left( {2.5 \le l/d \le 4.5} \right)\) and jet inclination (0 ≤ α ≤ 45°). The heat flux is found to be maximum at stagnation point for the jet inclination of 30°. It is observed that the jet to plate spacing has minimal effect of stagnation point maximum heat flux.
Volume 2: Micro/Nano-Thermal Manufacturing and Materials Processing; Boiling, Quenching and Condensation Heat Transfer on Engineered Surfaces; Computational Methods in Micro/Nanoscale Transport; Heat and Mass Transfer in Small Scale; Micro/Miniature Multi-Phase Devices; Biomedical Applications of Micro/Nanoscale Transport; Measurement Techniques and Thermophysical Properties in Micro/Nanoscale; Posters | 2016
Sandesh S. Chougule; Mayank Modak; Prajakta D. Gharge; Santosh K. Sahu
In present study, an experimental investigation has been carried out to analyze the heat transfer characteristics of CuO-water nanofluids jets on a hot surface. A rectangular stainless steel foil (AISI-304, 0.15 mm thick) is used as a test surface is electrically heated to obtain the required initial temperature. The distribution of heat flux on the target surface is evaluated from the recorded thermal images during transient cooling. The effect of nanoparticle concentration and Reynolds number of the nanofluids jet impingement heat transfer characteristics is studied. Tests were performed for an initial surface temperature of 500°C, Reynolds number (5000≤Re≤13000), CuO-water nanofluids concentration (Φ= 0.15%, 0.6%) and nozzle to plate distance was l/d= 4.Copyright
2016 24th International Conference on Nuclear Engineering | 2016
Mayank Modak; Vishal V. Nirgude; Avadhesh Kumar Sharma; Santosh K. Sahu
In the present work an attempt has been made to study the heat transfer characteristics of single circular jet on a variety of enhanced surfaces. In the present investigation three different copper target surfaces of various surface modifications: bare copper surface, pin fin enhancement surface and a flat surface coated with alumina porous layer. The heat transfer performance of each surface is studied in two phase boiling operation at different flow rates (3959 < Re < 7900). The comparison indicates that both the surface modification have enhanced the boiling heat transfer rates.Copyright
Chemical Engineering and Processing | 2015
Mayank Modak; Srikaanth Srinivasan; Krati Garg; Sandesh S. Chougule; Manish K. Agarwal; Santosh K. Sahu
International Journal of Thermal Sciences | 2017
Mayank Modak; Krati Garg; Srikaanth Srinivasan; Santosh K. Sahu
Journal of Heat Transfer-transactions of The Asme | 2017
Mayank Modak; Sandesh S. Chougule; Santosh K. Sahu
Chemical Engineering & Technology | 2015
Mayank Modak; Krati Garg; Santosh K. Sahu
Volume 9: Student Paper Competition | 2018
Avadhesh Kumar Sharma; Mayank Modak; Santosh K. Sahu