Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mayank Saraswat is active.

Publication


Featured researches published by Mayank Saraswat.


BioMed Research International | 2013

Preparative Purification of Recombinant Proteins: Current Status and Future Trends

Mayank Saraswat; Luca Musante; Alessandra Ravidà; Brian Shortt; Barry J. Byrne; Harry Holthöfer

Advances in fermentation technologies have resulted in the production of increased yields of proteins of economic, biopharmaceutical, and medicinal importance. Consequently, there is an absolute requirement for the development of rapid, cost-effective methodologies which facilitate the purification of such products in the absence of contaminants, such as superfluous proteins and endotoxins. Here, we provide a comprehensive overview of a selection of key purification methodologies currently being applied in both academic and industrial settings and discuss how innovative and effective protocols such as aqueous two-phase partitioning, membrane chromatography, and high-performance tangential flow filtration may be applied independently of or in conjunction with more traditional protocols for downstream processing applications.


PLOS ONE | 2012

Biochemical and Physical Characterisation of Urinary Nanovesicles following CHAPS Treatment

Luca Musante; Mayank Saraswat; Elodie Duriez; Barry Byrne; Alessandra Ravidà; Bruno Domon; Harry Holthöfer

Urinary exosomes represent a precious source of potential biomarkers for disease biology. Currently, the methods for vesicle isolation are severely restricted by the tendency of vesicle entrapment, e.g. by the abundant Tamm-Horsfall protein (THP) polymers. Treatment by reducing agents such as dithiothreitol (DTT) releases entrapped vesicles, thus increasing the final yield. However, this harsh treatment can cause remodelling of all those proteins which feature extra-vesicular domains stabilized by internal disulfide bridges and have detrimental effects on their biological activity. In order to optimize exosomal yield, we explore two vesicle treatment protocols - dithiothreitol (DTT) and 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic (CHAPS) - applied to the differential centrifugation protocol for exosomal vesicle isolation. The results show that CHAPS treatment does not affect vesicle morphology or exosomal marker distribution, thus eliminating most of THP interference. Moreover, the recovery and preservation of catalytic activity of two trans-membrane proteases, dipeptidyl peptidase IV and nephrilysin, was examined and found to be clearly superior after CHAPS treatment compared to DTT. Finally, proteomic profiling by mass spectrometry (MS) revealed that 76.2% of proteins recovered by CHAPS are common to those seen for DTT treatment, which illustrates underlining similarities between the two approaches. In conclusion, we provide a major improvement to currently-utilized urinary vesicle isolation strategies to allow recovery of urinary vesicles without the deleterious interference of abundant urinary proteins, while preserving typical protein folding and, consequently, the precious biological activity of urinary proteins which serve as valuable biomarkers.


PLOS ONE | 2012

Human epididymis protein-4 (HE-4): a novel cross-class protease inhibitor.

Nirmal Chhikara; Mayank Saraswat; Anil Kumar Tomar; Sharmistha Dey; Sarman Singh; Savita Yadav

Epididymal proteins represent the factors necessary for maturation of sperm and play a crucial role in sperm maturation. HE-4, an epididymal protein, is a member of whey acidic protein four-disulfide core (WFDC) family with no known function. A WFDC protein has a conserved WFDC domain of 50 amino acids with eight conserved cystine residue. HE-4 is a 124 amino acid long polypeptide with two WFDC domains. Here, we show that HE-4 is secreted in the human seminal fluid as a disulfide-bonded homo-trimer and is a cross-class protease inhibitor inhibits some of the serine, aspartyl and cysteine proteases tested using hemoglobin as a substrate. Using SPR we have also observed that HE-4 shows a significant binding with all these proteases. Disulfide linkages are essential for this activity. Moreover, HE-4 is N-glycosylated and highly stable on a wide range of pH and temperature. Taken together this suggests that HE-4 is a cross-class protease inhibitor which might confer protection against microbial virulence factors of proteolytic nature.


Nephrology Dialysis Transplantation | 2013

Recovery of urinary nanovesicles from ultracentrifugation supernatants

Luca Musante; Mayank Saraswat; Alessandra Ravidà; Barry Byrne; Harry Holthöfer

BACKGROUND Urinary vesicles represent a newly established source of biological material, widely considered to faithfully represent pathological events in the kidneys and the urogenital epithelium. The majority of currently applied isolation protocols involve cumbersome centrifugation steps to enrich vesicles from urine. To date, the efficiency of these approaches has not been investigated with respect to performing quantitative and qualitative analyses of vesicle populations in the pellet and supernatant (SN) fractions. METHODS After the series of differential centrifugations, the final SN was reduced to one-twentieth of the original volume by ammonium sulphate precipitation, with the precipitate pellet subjected to another round of differential centrifugations. Electron microscopy, dynamic light scattering and western blot analysis were used to characterize the vesicles present in individual fractions of interest. RESULTS Pellets obtained after the second set of centrifugations at 200 000 g revealed the presence of vesicles which share a common marker profile, but with distinct differences from those seen in the initial 200 000 g pellet used as the reference. This suggests an enrichment of previously uncharacterized urinary vesicles still in solution after the initial centrifugation steps. Analysis of protein yields recovered post-ultracentrifugation revealed an additional 40% of vesicles retained from the SN. Moreover, these structures showed a formidable resistance to harsh treatments (e.g. 95% ammonium sulphate saturation, hypotonic dialysis, 0.3 M sodium hydroxide). CONCLUSIONS Methods which employ differential centrifugations of native urine are remarkably ineffective and may lose a substantial population of biologically important vesicle species.


International Journal of Biological Macromolecules | 2012

Human serum albumin as a new interacting partner of prolactin inducible protein in human seminal plasma.

Sanjay Kumar; Anil Kumar Tomar; Sudhuman Singh; Mayank Saraswat; Sarman Singh; Tej P. Singh; Savita Yadav

Prolactin inducible protein (PIP) is a 17 kDa glycoprotein. It binds to many proteins including fibrinogen, actin, keratin, myosin, immunoglobulin G, CD4, and human zinc-alpha-2 glycoprotein. Its ability to bind a large array of proteins indicates its multifaceted role in various biological processes, such as fertility, immunoregulation, antimicrobial activity, apoptosis, and tumor progression. Here, we present the first report of native human serum albumin (HSA)-PIP complex formation in seminal plasma. The complex was purified by chromatographic separation techniques, analyzed by gel electrophoresis, identified by MALDI-TOF mass spectrometry and validated by co-immunoprecipitation coupled with western blotting experiments. Moreover, the behavior of complex in solution was analyzed by dynamic light scattering and interacting residues were identified by in silico protein-protein docking. The purified protein complex shows two bands (67 kDa and 17 kDa) on SDS-PAGE gel and a single band (~85 kDa) on native PAGE gel. The predicted complex structure has 13 intermolecular hydrogen bonds, which may contribute to the overall stability of the complex. As HSA has been known to preserve the motility of sperm, native HSA-PIP complex formation may point towards an important role of PIP, which can directly be correlated with male fertility/infertility.


Molecular & Cellular Proteomics | 2017

Human Spermatozoa Quantitative Proteomic Signature Classifies Normo- and Asthenozoospermia

Mayank Saraswat; Sakari Joenväärä; Tushar Jain; Anil Kumar Tomar; Ashima Sinha; Sarman Singh; Savita Yadav; Risto Renkonen

Scarcely understood defects lead to asthenozoospermia, which results in poor fertility outcomes. Incomplete knowledge of these defects hinders the development of new therapies and reliance on interventional therapies, such as in vitro fertilization, increases. Sperm cells, being transcriptionally and translationally silent, necessitate the proteomic approach to study the sperm function. We have performed a differential proteomics analysis of human sperm and seminal plasma and identified and quantified 667 proteins in sperm and 429 proteins in seminal plasma data set, which were used for further analysis. Statistical and mathematical analysis combined with pathway analysis and self-organizing maps clustering and correlation was performed on the data set. It was found that sperm proteomic signature combined with statistical analysis as opposed to the seminal plasma proteomic signature can differentiate the normozoospermic versus the asthenozoospermic sperm samples. This is despite the results that some of the seminal plasma proteins have big fold changes among classes but they fall short of statistical significance. S-Plot of the sperm proteomic data set generated some high confidence targets, which might be implicated in sperm motility pathways. These proteins also had the area under the curve value of 0.9 or 1 in ROC curve analysis. Various pathways were either enriched in these proteomic data sets by pathway analysis or they were searched by their constituent proteins. Some of these pathways were axoneme activation and focal adhesion assembly, glycolysis, gluconeogenesis, cellular response to stress and nucleosome assembly among others. The mass spectrometric data is available via ProteomeXchange with identifier PXD004098.


Molecular & Cellular Proteomics | 2015

N-linked (N-) Glycoproteomics of Urinary Exosomes

Mayank Saraswat; Sakari Joenväärä; Luca Musante; Hannu Peltoniemi; Harry Holthöfer; Risto Renkonen

Epithelial cells lining the urinary tract secrete urinary exosomes (40–100 nm) that can be targeted to specific cells modulating their functionality. One potential targeting mechanism is adhesion between vesicle surface glycoproteins and target cells. This makes the glycopeptide analysis of exosomes important. Exosomes reflect the physiological state of the parent cells; therefore, they are a good source of biomarkers for urological and other diseases. Moreover, the urine collection is easy and noninvasive and urinary exosomes give information about renal and systemic organ systems. Accordingly, multiple studies on proteomic characterization of urinary exosomes in health and disease have been published. However, no systematic analysis of their glycoproteomic profile has been carried out to date, whereas a conserved glycan signature has been found for exosomes from urine and other sources including T cell lines and human milk. Here, we have enriched and identified the N-glycopeptides from these vesicles. These enriched N-glycopeptides were solved for their peptide sequence, glycan composition, structure, and glycosylation site using collision-induced dissociation MS/MS (CID-tandem MS) data interpreted by a publicly available software GlycopeptideId. Released glycans from the same sample was also analyzed with MALDI-MS. We have identified the N-glycoproteome of urinary exosomes. In total 126 N-glycopeptides from 51 N-glycosylation sites belonging to 37 glycoproteins were found in our results. The peptide sequences of these N-glycopeptides were identified unambiguously and their glycan composition (for 125 N-glycopeptides) and structures (for 87 N-glycopeptides) were proposed. A corresponding glycomic analysis with released N-glycans was also performed. We identified 66 unique nonmodified N-glycan compositions and in addition 13 sulfated/phosphorylated glycans were also found. This is the first systematic analysis of N-glycoproteome of urinary exosomes.


Molecular & Cellular Proteomics | 2015

N-linked (N-) glycoproteomics of urinary exosomes. [Corrected].

Mayank Saraswat; Sakari Joenväärä; Luca Musante; Hannu Peltoniemi; Harry Holthöfer; Risto Renkonen

Epithelial cells lining the urinary tract secrete urinary exosomes (40–100 nm) that can be targeted to specific cells modulating their functionality. One potential targeting mechanism is adhesion between vesicle surface glycoproteins and target cells. This makes the glycopeptide analysis of exosomes important. Exosomes reflect the physiological state of the parent cells; therefore, they are a good source of biomarkers for urological and other diseases. Moreover, the urine collection is easy and noninvasive and urinary exosomes give information about renal and systemic organ systems. Accordingly, multiple studies on proteomic characterization of urinary exosomes in health and disease have been published. However, no systematic analysis of their glycoproteomic profile has been carried out to date, whereas a conserved glycan signature has been found for exosomes from urine and other sources including T cell lines and human milk. Here, we have enriched and identified the N-glycopeptides from these vesicles. These enriched N-glycopeptides were solved for their peptide sequence, glycan composition, structure, and glycosylation site using collision-induced dissociation MS/MS (CID-tandem MS) data interpreted by a publicly available software GlycopeptideId. Released glycans from the same sample was also analyzed with MALDI-MS. We have identified the N-glycoproteome of urinary exosomes. In total 126 N-glycopeptides from 51 N-glycosylation sites belonging to 37 glycoproteins were found in our results. The peptide sequences of these N-glycopeptides were identified unambiguously and their glycan composition (for 125 N-glycopeptides) and structures (for 87 N-glycopeptides) were proposed. A corresponding glycomic analysis with released N-glycans was also performed. We identified 66 unique nonmodified N-glycan compositions and in addition 13 sulfated/phosphorylated glycans were also found. This is the first systematic analysis of N-glycoproteome of urinary exosomes.


Kidney International | 2015

Glycosylation patterns of kidney proteins differ in rat diabetic nephropathy

Alessandra Ravidà; Luca Musante; Marjut Kreivi; Ilkka Miinalainen; Barry Byrne; Mayank Saraswat; Michael Henry; Paula Meleady; Martin Clynes; Harry Holthöfer

Diabetic nephropathy often progresses to end-stage kidney disease and, ultimately, to renal replacement therapy. Hyperglycemia per se is expected to have a direct impact on the biosynthesis of N- and O-linked glycoproteins. This study aims to establish the link between protein glycosylation and progression of experimental diabetic kidney disease using orthogonal methods. Kidneys of streptozotocin-diabetic and control rats were harvested at three different time points post streptozotocin injection. A panel of 12 plant lectins was used in the screening of lectin blots. The lectins UEAI, PHA-E, GSI, PNA, and RCA identified remarkable disease-associated differences in glycoprotein expression. Lectin affinity chromatography followed by mass spectrometric analyses led to the identification of several glycoproteins involved in salt-handling, angiogenesis, and extracellular matrix degradation. Our data confirm a substantial link between glycosylation signature and diabetes progression. Furthermore, as suggested by our findings on dipeptidyl peptidase-IV, altered protein glycosylation may reflect changes in biochemical properties such as enzymatic activity. Thus, our study demonstrates the unexplored potential of protein glycosylation analysis in the discovery of molecules linked to diabetic kidney disease.


Biomarkers in Medicine | 2010

Differential proteomics of sperm: insights, challenges and future prospects

Anil Kumar Tomar; Mayank Saraswat; Nirmal Chhikara; Sanjay Kumar; Vikash Kumar Yadav; Balwinder Singh Sooch; Tej P. Singh; Savita Yadav

Male factors account for 40% of infertility cases and most are caused by low sperm count, poor sperm quality or both. Defects in sperm are directly linked to reproductive malfunctions, and these defects may be caused by genetic mutations, environmental factors and exposure to free radicals, for example. Almost half of the male infertility cases have no known cause, indicating the lack of sensitive tests for the diagnosis of infertility. Proteomics has evolved as a major research field in biology and medicine, to identify and validate potent targets, at the molecular level, for development of more sensitive diagnostic tools. The recent advances in this field focus on the identification of differentially expressed proteins and analyzing their functional aspects for better understanding of the biological pathways. It not only provides a platform to discover biomarkers of infertility, but may also help in the design of effective male contraceptives. This article discusses various insights of proteomics for exploring biomarkers of male infertility in sperm. It also discusses the enhanced understanding of reproductive physiology offered by data produced by proteomic studies of spermatozoa.

Collaboration


Dive into the Mayank Saraswat's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Savita Yadav

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anil Kumar Tomar

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caj Haglund

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar

Sarman Singh

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge