Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mayank Varia is active.

Publication


Featured researches published by Mayank Varia.


theory of cryptography conference | 2010

Obfuscation of hyperplane membership

Ran Canetti; Guy N. Rothblum; Mayank Varia

Previous work on program obfuscation gives strong negative results for general-purpose obfuscators, and positive results for obfuscating simple functions such as equality testing (point functions). In this work, we construct an obfuscator for a more complex algebraic functionality: testing for membership in a hyperplane (of constant dimension). We prove the security of the obfuscator under a new strong variant of the Decisional Diffie-Hellman assumption. Finally, we show a cryptographic application of the new obfuscator to digital signatures.


theory of cryptography conference | 2010

On symmetric encryption and point obfuscation

Ran Canetti; Yael Tauman Kalai; Mayank Varia; Daniel Wichs

We show tight connections between several cryptographic primitives, namely encryption with weakly random keys, encryption with key-dependent messages (KDM), and obfuscation of point functions with multi-bit output (which we call multi-bit point functions, or MBPFs, for short). These primitives, which have been studied mostly separately in recent works, bear some apparent similarities, both in the flavor of their security requirements and in the flavor of their constructions and assumptions. Still, rigorous connections have not been drawn. Our results can be interpreted as indicating that MBPF obfuscators imply a very strong form of encryption that simultaneously achieves security for weakly-random keys and key-dependent messages as special cases. Similarly, each one of the other primitives implies a certain restricted form of MBPF obfuscation. Our results carry both constructions and impossibility results from one primitive to others. In particular: The recent impossibility result for KDM security of Haitner and Holenstein (TCC ’09) carries over to MBPF obfuscators. The Canetti-Dakdouk construction of MBPF obfuscators based on a strong variant of the DDH assumption (EC ’08) gives an encryption scheme which is secure w.r.t. any weak key distribution of super-logarithmic min-entropy (and in particular, also has very strong leakage resilient properties). All the recent constructions of encryption schemes that are secure w.r.t. weak keys imply a weak form of MBPF obfuscators.


ieee high performance extreme computing conference | 2014

Computing on masked data: a high performance method for improving big data veracity

Jeremy Kepner; Vijay Gadepally; Peter Michaleas; Nabil Schear; Mayank Varia; Arkady Yerukhimovich; Robert K. Cunningham

The growing gap between data and users calls for innovative tools that address the challenges faced by big data volume, velocity and variety. Along with these standard three Vs of big data, an emerging fourth “V” is veracity, which addresses the confidentiality, integrity, and availability of the data. Traditional cryptographic techniques that ensure the veracity of data can have overheads that are too large to apply to big data. This work introduces a new technique called Computing on Masked Data (CMD), which improves data veracity by allowing computations to be performed directly on masked data and ensuring that only authorized recipients can unmask the data. Using the sparse linear algebra of associative arrays, CMD can be performed with significantly less overhead than other approaches while still supporting a wide range of linear algebraic operations on the masked data. Databases with strong support of sparse operations, such as SciDB or Apache Accumulo, are ideally suited to this technique. Examples are shown for the application of CMD to a complex DNA matching algorithm and to database operations over social media data.


theory of cryptography conference | 2009

Non-malleable Obfuscation

Ran Canetti; Mayank Varia

Existing definitions of program obfuscation do not rule out malleability attacks, where an adversary that sees an obfuscated program is able to generate another (potentially obfuscated) program that is related to the original one in some way. We formulate two natural flavors of non-malleability requirements for program obfuscation, and show that they are incomparable in general. We also construct non-malleable obfuscators of both flavors for some program families of interest. Some of our constructions are in the Random Oracle model, whereas another one is in the common reference string model. We also define the notion of verifiable obfuscation which is of independent interest.


allerton conference on communication, control, and computing | 2013

Bounds on inference

Flávio du Pin Calmon; Mayank Varia; Muriel Médard; Mark M. Christiansen; Ken R. Duffy; Stefano Tessaro

Lower bounds for the average probability of error of estimating a hidden variable X given an observation of a correlated random variable Y, and Fanos inequality in particular, play a central role in information theory. In this paper, we present a lower bound for the average estimation error based on the marginal distribution of X and the principal inertias of the joint distribution matrix of X and Y. Furthermore, we discuss an information measure based on the sum of the largest principal inertias, called k-correlation, which generalizes maximal correlation. We show that k-correlation satisfies the Data Processing Inequality and is convex in the conditional distribution of Y given X. Finally, we investigate how to answer a fundamental question in inference and privacy: given an observation Y, can we estimate a function f(X) of the hidden random variable X with an average error below a certain threshold? We provide a general method for answering this question using an approach based on rate-distortion theory.


information theory workshop | 2014

An exploration of the role of principal inertia components in information theory

Flávio du Pin Calmon; Mayank Varia; Muriel Médard

The principal inertia components of the joint distribution of two random variables X and Y are inherently connected to how an observation of Y is statistically related to a hidden variable X. In this paper, we explore this connection within an information theoretic framework. We show that, under certain symmetry conditions, the principal inertia components play an important role in estimating one-bit functions of X, namely f(X), given an observation of Y. In particular, the principal inertia components bear an interpretation as filter coefficients in the linear transformation of pf(X)|X into pf(X)|Y. This interpretation naturally leads to the conjecture that the mutual information between f(X) and Y is maximized when all the principal inertia components have equal value. We also study the role of the principal inertia components in the Markov chain B → X → Y → B̂, where B and B̂ are binary random variables. We illustrate our results for the setting where X and Y are binary strings and Y is the result of sending X through an additive noise binary channel.


ieee international conference on technologies for homeland security | 2015

Computing on Masked Data to improve the security of big data

Vijay Gadepally; Braden Hancock; Benjamin Kaiser; Jeremy Kepner; Peter Michaleas; Mayank Varia; Arkady Yerukhimovich

Organizations that make use of large quantities of information require the ability to store and process data from central locations so that the product can be shared or distributed across a heterogeneous group of users. However, recent events underscore the need for improving the security of data stored in such untrusted servers or databases. Advances in cryptographic techniques and database technologies provide the necessary security functionality but rely on a computational model in which the cloud is used solely for storage and retrieval. Much of big data computation and analytics make use of signal processing fundamentals for computation. As the trend of moving data storage and computation to the cloud increases, homeland security missions should understand the impact of security on key signal processing kernels such as correlation or thresholding. In this article, we propose a tool called Computing on Masked Data (CMD), which combines advances in database technologies and cryptographic tools to provide a low overhead mechanism to offload certain mathematical operations securely to the cloud. This article describes the design and development of the CMD tool.


Operating Systems Review | 2015

Automated Assessment of Secure Search Systems

Mayank Varia; Benjamin Price; Nicholas Hwang; Ariel Hamlin; Jonathan Herzog; Jill Poland; Michael Reschly; Sophia Yakoubov; Robert K. Cunningham

This work presents the results of a three-year project that assessed nine different privacy-preserving data search systems. We detail the design of a software assessment framework that focuses on low system footprint, repeatability, and reusability. A unique achievement of this project was the automation and integration of the entire test process, from the production and execution of tests to the generation of human-readable evaluation reports. We synthesize our experiences into a set of simple mantras that we recommend following in the design of any assessment framework.


ieee symposium on security and privacy | 2017

SoK: Cryptographically Protected Database Search

Benjamin Fuller; Mayank Varia; Arkady Yerukhimovich; Emily Shen; Ariel Hamlin; Vijay Gadepally; Richard Shay; John Darby Mitchell; Robert K. Cunningham

Protected database search systems cryptographically isolate the roles of reading from, writing to, and administering the database. This separation limits unnecessary administrator access and protects data in the case of system breaches. Since protected search was introduced in 2000, the area has grown rapidly, systems are offered by academia, start-ups, and established companies. However, there is no best protected search system or set of techniques. Design of such systems is a balancing act between security, functionality, performance, and usability. This challenge is made more difficult by ongoing database specialization, as some users will want the functionality of SQL, NoSQL, or NewSQL databases. This database evolution will continue, and the protected search community should be able to quickly provide functionality consistent with newly invented databases. At the same time, the community must accurately and clearly characterize the tradeoffs between different approaches. To address these challenges, we provide the following contributions:1) An identification of the important primitive operations across database paradigms. We find there are a small number of base operations that can be used and combined to support a large number of database paradigms.2) An evaluation of the current state of protected search systems in implementing these base operations. This evaluation describes the main approaches and tradeoffs for each base operation. Furthermore, it puts protected search in the context of unprotected search, identifying key gaps in functionality.3) An analysis of attacks against protected search for different base queries.4) A roadmap and tools for transforming a protected search system into a protected database, including an open-source performance evaluation platform and initial user opinions of protected search.


financial cryptography | 2015

HEtest: A Homomorphic Encryption Testing Framework

Mayank Varia; Sophia Yakoubov; Yang Yang

In this work, we present a generic open-source software framework that can evaluate the correctness and performance of homomorphic encryption software. Our framework, called HEtest, automates the entire process of a test: generation of data for testing (such as circuits and inputs), execution of a test, comparison of performance to an insecure baseline, statistical analysis of the test results, and production of a LaTeX report. To illustrate the capability of our framework, we present a case study of our analysis of the open-source HElib homomorphic encryption software. We stress though that HEtest is written in a modular fashion, so it can easily be adapted to test any homomorphic encryption software.

Collaboration


Dive into the Mayank Varia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Muriel Médard

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Arkady Yerukhimovich

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert K. Cunningham

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Vijay Gadepally

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ariel Hamlin

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge