Mayu Isono
Gunma University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mayu Isono.
Radiation Research | 2014
Akihisa Takahashi; Makoto Kubo; Hongyu Ma; Akiko Nakagawa; Yukari Yoshida; Mayu Isono; Tatsuaki Kanai; Tatsuya Ohno; Yoshiya Furusawa; Tomoo Funayama; Yasuhiko Kobayashi; Takashi Nakano
DNA double-strand breaks (DSBs) induced by ionizing radiation pose a major threat to cell survival. The cell can respond to the presence of DSBs through two major repair pathways: homologous recombination (HR) and nonhomologous end joining (NHEJ). Higher levels of cell death are induced by high-linear energy transfer (LET) radiation when compared to low-LET radiation, even at the same physical doses, due to less effective and efficient DNA repair. To clarify whether high-LET radiation inhibits all repair pathways or specifically one repair pathway, studies were designed to examine the effects of radiation with different LET values on DNA DSB repair and radiosensitivity. Embryonic fibroblasts bearing repair gene (NHEJ-related Lig4 and/or HR-related Rad54) knockouts (KO) were used and their responses were compared to wild-type cells. The cells were exposed to X rays, spread-out Bragg peak (SOBP) carbon ion beams as well as with carbon, iron, neon and argon ions. Cell survival was measured with colony-forming assays. The sensitization enhancement ratio (SER) values were calculated using the 10% survival dose of wild-type cells and repair-deficient cells. Cellular radiosensitivity was listed in descending order: double-KO cells > Lig4-KO cells > Rad54-KO cells > wild-type cells. Although Rad54-KO cells had an almost constant SER value, Lig4-KO cells showed a high-SER value when compared to Rad54-KO cells, even with increasing LET values. These results suggest that with carbon-ion therapy, targeting NHEJ repair yields higher radiosensitivity than targeting homologous recombination repair.
Nature Communications | 2017
Hiro Sato; Atsuko Niimi; Takaaki Yasuhara; Tiara Bunga Mayang Permata; Yoshihiko Hagiwara; Mayu Isono; Endang Nuryadi; Ryota Sekine; Takahiro Oike; Sangeeta Kakoti; Yuya Yoshimoto; Kathryn D. Held; Yoshiyuki Suzuki; Koji Kono; Kiyoshi Miyagawa; Takashi Nakano; Atsushi Shibata
Accumulating evidence suggests that exogenous cellular stress induces PD-L1 upregulation in cancer. A DNA double-strand break (DSB) is the most critical type of genotoxic stress, but the involvement of DSB repair in PD-L1 expression has not been investigated. Here we show that PD-L1 expression in cancer cells is upregulated in response to DSBs. This upregulation requires ATM/ATR/Chk1 kinases. Using an siRNA library targeting DSB repair genes, we discover that BRCA2 depletion enhances Chk1-dependent PD-L1 upregulation after X-rays or PARP inhibition. In addition, we show that Ku70/80 depletion substantially enhances PD-L1 upregulation after X-rays. The upregulation by Ku80 depletion requires Chk1 activation following DNA end-resection by Exonuclease 1. DSBs activate STAT1 and STAT3 signalling, and IRF1 is required for DSB-dependent PD-L1 upregulation. Thus, our findings reveal the involvement of DSB repair in PD-L1 expression and provide mechanistic insight into how PD-L1 expression is regulated after DSBs.PD-L1 is upregulated in many cancers due to exogenous cellular stress. Here the authors show that PD-L1 is upregulated in response to DNA double strand breaks via STAT and IRF1 signalling.
PLOS ONE | 2014
Napapat Amornwichet; Takahiro Oike; Atsushi Shibata; Hideaki Ogiwara; Naoto Tsuchiya; Motohiro Yamauchi; Yuka Saitoh; Ryota Sekine; Mayu Isono; Yukari Yoshida; Tatsuya Ohno; Takashi Kohno; Takashi Nakano
Background and Purpose To understand the mechanisms involved in the strong killing effect of carbon-ion beam irradiation on cancer cells with TP53 tumor suppressor gene deficiencies. Materials and Methods DNA damage responses after carbon-ion beam or X-ray irradiation in isogenic HCT116 colorectal cancer cell lines with and without TP53 (p53+/+ and p53-/-, respectively) were analyzed as follows: cell survival by clonogenic assay, cell death modes by morphologic observation of DAPI-stained nuclei, DNA double-strand breaks (DSBs) by immunostaining of phosphorylated H2AX (γH2AX), and cell cycle by flow cytometry and immunostaining of Ser10-phosphorylated histone H3. Results The p53-/- cells were more resistant than the p53+/+ cells to X-ray irradiation, while the sensitivities of the p53+/+ and p53-/- cells to carbon-ion beam irradiation were comparable. X-ray and carbon-ion beam irradiations predominantly induced apoptosis of the p53+/+ cells but not the p53-/- cells. In the p53-/- cells, carbon-ion beam irradiation, but not X-ray irradiation, markedly induced mitotic catastrophe that was associated with premature mitotic entry with harboring long-retained DSBs at 24 h post-irradiation. Conclusions Efficient induction of mitotic catastrophe in apoptosis-resistant p53-deficient cells implies a strong cancer cell-killing effect of carbon-ion beam irradiation that is independent of the p53 status, suggesting its biological advantage over X-ray treatment.
Journal of Radiation Research | 2015
Yuya Yoshimoto; Takahiro Oike; Noriyuki Okonogi; Yoshiyuki Suzuki; Ken Ando; Hiro Sato; Shin-ei Noda; Mayu Isono; Kousaku Mimura; Koji Kono; Takashi Nakano
X-ray radiotherapy activates tumor antigen-specific T-cell responses, and increases in the serum levels of high mobility group box 1 (HMGB1) induced by X-ray irradiation play a pivotal role in activating anti-tumor immunity. Here, we examined whether carbon-ion beams, as well as X-rays, can induce HMGB1 release from human cancer cell lines. The study examined five human cancer cell lines: TE2, KYSE70, A549, NCI-H460 and WiDr. The proportion of cells surviving X- or carbon-ion beam irradiation was assessed in a clonogenic assay. The D10, the dose at which 10% of cells survive, was calculated using a linear–quadratic model. HMGB1 levels in the culture supernatants were assessed by an ELISA. The D10 dose for X-rays in TE2, KYSE70, A549, NCI-H460 and WiDr cells was 2.1, 6.7, 8.0, 4.8 and 7.1 Gy, respectively, whereas that for carbon-ion beams was 0.9, 2.5, 2.7, 1.8 and 3.5 Gy, respectively. X-rays and carbon-ion beams significantly increased HMGB1 levels in the culture supernatants of A549, NCI-H460 and WiDr cells at 72 h post-irradiation with a D10 dose. Furthermore, irradiation with X-rays or carbon-ion beams significantly increased HMGB1 levels in the culture supernatants of all five cell lines at 96 h post-irradiation. There was no significant difference in the amount of HMGB1 induced by X-rays and carbon-ion beams at any time-point (except at 96 h for NCI-H460 cells); thus we conclude that comparable levels of HMGB1 were detected after irradiation with iso-survival doses of X-rays and carbon-ion beams.
Scientific Reports | 2015
Napapat Amornwichet; Takahiro Oike; Atsushi Shibata; Chaitanya S. Nirodi; Hideaki Ogiwara; Haruhiko Makino; Yuka Kimura; Yuka Hirota; Mayu Isono; Yukari Yoshida; Tatsuya Ohno; Takashi Kohno; Takashi Nakano
Carbon-ion radiotherapy (CIRT) holds promise to treat inoperable locally-advanced non-small cell lung carcinoma (NSCLC), a disease poorly controlled by standard chemoradiotherapy using X-rays. Since CIRT is an extremely limited medical resource, selection of NSCLC patients likely to benefit from it is important; however, biological predictors of response to CIRT are ill-defined. The present study investigated the association between the mutational status of EGFR and KRAS, driver genes frequently mutated in NSCLC, and the relative biological effectiveness (RBE) of carbon-ion beams over X-rays. The assessment of 15 NSCLC lines of different EGFR/KRAS mutational status and that of isogenic NSCLC lines expressing wild-type or mutant EGFR revealed that EGFR-mutant NSCLC cells, but not KRAS-mutant cells, show low RBE. This was attributable to (i) the high X-ray sensitivity of EGFR-mutant cells, since EGFR mutation is associated with a defect in non-homologous end joining, a major pathway for DNA double-strand break (DSB) repair, and (ii) the strong cell-killing effect of carbon-ion beams due to poor repair of carbon-ion beam-induced DSBs regardless of EGFR mutation status. These data highlight the potential of EGFR mutation status as a predictor of response to CIRT, i.e., CIRT may show a high therapeutic index in EGFR mutation-negative NSCLC.
Oncology Reports | 2017
Nakako Izumi Nakajima; Atsuko Niimi; Mayu Isono; Takahiro Oike; Hiro Sato; Takashi Nakano; Atsushi Shibata
Immunotherapy is expected to be promising as a next generation cancer therapy. Immunoreceptors are often activated constitutively in cancer cells, however, such levels of ligand expression are not effectively recognized by the native immune system due to tumor microenvironmental adaptation. Studies have demonstrated that natural-killer group 2, member D (NKG2D), a major activating immunoreceptor, responds to DNA damage. The upregulation of major histocompatibility complex class I-related chain A and B (MICA/B) (members of NKG2D ligands) expression after DNA damage is associated with NK cell-mediated killing of cancer cells. However, the regulation of DNA damage-induced MICA/B expression has not been fully elucidated in the context of the types of cancer cell lines. In the present study, we found that MICA/B expression varied between cancer cell lines after DNA damage. Screening in terms of chromatin remodeling identified that inhibitors related to chromatin relaxation via post-translational modification on histone H3K9, i.e. HDAC, Suv39 or G9a inhibition, restored DNA damage-dependent MICA/B expression in insensitive cells. In addition, we revealed that the restored MICA/B expression was dependent on ATR as well as E2F1, a transcription factor. We further revealed that low-dose treatment of an HDAC inhibitor was sufficient to restore MICA/B expression in insensitive cells. Finally, we demonstrated that HDAC inhibition restored DNA damage-dependent cytotoxic NK activity against insensitive cells. Thus, the present study revealed that DNA damage-dependent MICA/B expression in insensitive cancer cells can be restored by chromatin relaxation via the HDAC/Suv39/G9a pathway. Collectively, manipulation of chromatin status by therapeutic cancer drugs may potentiate the antitumor effect by enhancing immune activation following radiotherapy and DNA damage-associated chemotherapy.
Scientific Reports | 2017
Daijiro Kobayashi; Takahiro Oike; Atsushi Shibata; Atsuko Niimi; Yoshiki Kubota; Makoto Sakai; Napapat Amornwhichet; Yuya Yoshimoto; Yoshihiko Hagiwara; Yuka Kimura; Yuka Hirota; Hiro Sato; Mayu Isono; Yukari Yoshida; Takashi Kohno; Tatsuya Ohno; Takashi Nakano
In cancer therapy today, carbon ion radiotherapy is used mainly as monotherapy, whereas cisplatin is used concomitantly with X-ray radiotherapy. The effectiveness of concomitant carbon ions and cisplatin is unclear. To obtain the information on the mechanisms potentially shared between carbon ions or X-rays and cisplatin, we assessed the correlation of sensitivity to the single treatments. In 20 human cancer cell lines, sensitivity to X-rays strongly correlated with sensitivity to cisplatin, indicating the presence of potentially shared target mechanisms. Interestingly, the correlation of sensitivity to carbon ions and cisplatin was much weaker than that of sensitivity to X-rays and cisplatin, indicating the presence of potentially different target mechanisms between carbon ions and cisplatin. Assessment of clonogenic cell death by 4′,6-diamidino-2-phenylindole dihydrochloride staining showed that mitotic catastrophe was more efficiently induced by carbon ions than by the same physical dose of X-rays, while apoptosis and senescence were not. These data indicate that the correlation of sensitivity to carbon ions and cisplatin is weaker than that of sensitivity to X-rays and cisplatin, which are helpful as biological basis to understand the potentially shared mechanism among these treatments. Further investigation is mandatory to elucidate the clinical efficacy of carbon ions and cisplatin combination.
Journal of Radiation Research | 2015
Mayu Isono; Yukari Yoshida; Akihisa Takahashi; Takahiro Oike; Atsushi Shibata; Yoshiki Kubota; Tatsuaki Kanai; Tatsuya Ohno; Takashi Nakano
Carbon-ion radiotherapy (CIRT) holds promise in the treatment of glioblastoma, an aggressive X-ray–resistant brain tumor. However, since glioblastoma cells show a highly invasive nature, carbon-ion (C-ion) irradiation of normal tissues surrounding the tumor is inevitable. Recent studies have revealed the existence of neural stem cells in the adult brain. Therefore, the damaging effect of C-ion beams on the neural stem cells has to be carefully considered in the treatment planning of CIRT. Here, we investigated the growth and death mode of human neural stem cells (hNSCs) and glioblastoma A172 cells after X-ray or C-ion beam irradiation. The X-ray dose resulting in a 50% growth rate (D50) was 0.8 Gy in hNSCs and 3.0 Gy in A172 cells, while the D50 for C-ion beams was 0.4 Gy in hNSCs and 1.6 Gy in A172 cells; the relative biological effectiveness value of C-ion beams was 2.0 in hNSCs and 1.9 in A172 cells. Importantly, both X-rays and C-ion beams preferentially induced apoptosis, not necrosis, in hNSCs; however, radiation-induced apoptosis was less evident in A172 cells. The apoptosis-susceptible nature of the irradiated hNSCs was associated with prolonged upregulation of phosphorylated p53, whereas the apoptosis-resistant nature of A172 cells was associated with a high basal level of nuclear factor kappa B expression. Taken together, these data indicate that apoptosis is the major cell death pathway in hNSCs after irradiation. The high sensitivity of hNSCs to C-ion beams underscores the importance of careful target volume delineation in the treatment planning of CIRT for glioblastoma.
Scientific Reports | 2017
Ryo Sakasai; Mayu Isono; Mitsuo Wakasugi; Mitsumasa Hashimoto; Yumi Sunatani; Tadashi Matsui; Atsushi Shibata; Tsukasa Matsunaga; Kuniyoshi Iwabuchi
Accumulating evidence indicates that transcription is closely related to DNA damage formation and that the loss of RNA biogenesis factors causes genome instability. However, whether such factors are involved in DNA damage responses remains unclear. We focus here on the RNA helicase Aquarius (AQR), a known R-loop processing factor, and show that its depletion in human cells results in the accumulation of DNA damage during S phase, mediated by R-loop formation. We investigated the involvement of Aquarius in DNA damage responses and found that AQR knockdown decreased DNA damage-induced foci formation of Rad51 and replication protein A, suggesting that Aquarius contributes to homologous recombination (HR)-mediated repair of DNA double-strand breaks (DSBs). Interestingly, the protein level of CtIP, a DSB processing factor, was decreased in AQR-knockdown cells. Exogenous expression of Aquarius partially restored CtIP protein level; however, CtIP overproduction did not rescue defective HR in AQR-knockdown cells. In accordance with these data, Aquarius depletion sensitized cells to genotoxic agents. We propose that Aquarius contributes to the maintenance of genomic stability via regulation of HR by CtIP-dependent and -independent pathways.
Oncotarget | 2017
Yoshihiko Hagiwara; Atsuko Niimi; Mayu Isono; Motohiro Yamauchi; Takaaki Yasuhara; Siripan Limsirichaikul; Takahiro Oike; Hiro Sato; Kathryn D. Held; Takashi Nakano; Atsushi Shibata
DNA double-strand breaks (DSBs) induced by ionising radiation are considered the major cause of genotoxic mutations and cell death. While DSBs are dispersed throughout chromatin after X-rays or γ-irradiation, multiple types of DNA damage including DSBs, single-strand breaks and base damage can be generated within 1–2 helical DNA turns, defined as a complex DNA lesion, after high Linear Energy Transfer (LET) particle irradiation. In addition to the formation of complex DNA lesions, recent evidence suggests that multiple DSBs can be closely generated along the tracks of high LET particle irradiation. Herein, by using three dimensional (3D)-structured illumination microscopy, we identified the formation of 3D widespread γH2AX foci after high LET carbon-ion irradiation. The large γH2AX foci in G2-phase cells encompassed multiple foci of replication protein A (RPA), a marker of DSBs undergoing resection during homologous recombination. Furthermore, we demonstrated by 3D analysis that the distance between two individual RPA foci within γH2AX foci was approximately 700 nm. Together, our findings suggest that high LET heavy-ion particles induce clustered DSB formation on a scale of approximately 1 μm3. These closely localised DSBs are considered to be a risk for the formation of chromosomal rearrangement after heavy-ion irradiation.