Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mayuko Osada-Oka is active.

Publication


Featured researches published by Mayuko Osada-Oka.


International Journal of Cardiology | 2015

Repeated remote ischemic conditioning attenuates left ventricular remodeling via exosome-mediated intercellular communication on chronic heart failure after myocardial infarction.

Takehiro Yamaguchi; Yasukatsu Izumi; Yasuhiro Nakamura; Takanori Yamazaki; Masayuki Shiota; Soichi Sano; Masako Tanaka; Mayuko Osada-Oka; Kenei Shimada; Katuyuki Miura; Minoru Yoshiyama; Hiroshi Iwao

BACKGROUND Remote ischemic conditioning (RIC) by repeated treatment of transient limb ischemia is a clinically applicable method for protecting the heart against injury at the time of reperfusion. In this study, we investigated the effects of repeated RIC on cardiac dysfunction after myocardial infarction (MI). METHODS AND RESULTS At 4weeks after MI, rats were separated into the untreated (UT) group or the RIC-treated group. RIC treatment was performed by 5cycles of 5min of bilateral hindlimb ischemia and 5min of reperfusion once a day for 4weeks. Despite comparable MI size, left ventricular (LV) ejection fraction (LVEF) was significantly improved in the RIC group compared with the UT group. Furthermore, the LVEF in the RIC group was improved, although not significantly, after treatment. RIC treatment also prevented the deterioration of LV diastolic function. MI-induced LV interstitial fibrosis in the boundary region and oxidant stress were significantly attenuated by RIC treatment. MicroRNA-29a (miR-29a), a key regulator of tissue fibrosis, was highly expressed in the exosomes and the marginal area of the RIC group. Even in the differentiated C2C12-derived exosomes, miR-29a expression was significantly increased under hypoxic condition. As well as miR-29a, insulin-like growth factor 1 receptor (IGF-1R) was highly expressed both in the exosomes and remote non-infarcted myocardium of the RIC group. IGF-1R expression was also increased in the C2C12-derived exosomes under hypoxic conditions. CONCLUSIONS Repeated RIC reduces adverse LV remodeling and oxidative stress by MI. Exosome-mediated intercellular communication may contribute to the beneficial effect of RIC treatment.


Biochemical and Biophysical Research Communications | 2014

Lipid synthesis is promoted by hypoxic adipocyte-derived exosomes in 3T3-L1 cells.

Soichi Sano; Yasukatsu Izumi; Takehiro Yamaguchi; Takanori Yamazaki; Masako Tanaka; Masayuki Shiota; Mayuko Osada-Oka; Yasuhiro Nakamura; Min Wei; Hideki Wanibuchi; Hiroshi Iwao; Minoru Yoshiyama

Hypoxia occurs within adipose tissues as a result of adipocyte hypertrophy and is associated with adipocyte dysfunction in obesity. Here, we examined whether hypoxia affects the characteristics of adipocyte-derived exosomes. Exosomes are nanovesicles secreted from most cell types as an information carrier between donor and recipient cells, containing a variety of proteins as well as genetic materials. Cultured differentiated 3T3-L1 adipocytes were exposed to hypoxic conditions and the protein content of the exosomes produced from these cells was compared by quantitative proteomic analysis. A total of 231 proteins were identified in the adipocyte-derived exosomes. Some of these proteins showed altered expression levels under hypoxic conditions. These results were confirmed by immunoblot analysis. Especially, hypoxic adipocyte-released exosomes were enriched in enzymes related to de novo lipogenesis such as acetyl-CoA carboxylase, glucose-6-phosphate dehydrogenase, and fatty acid synthase (FASN). The total amount of proteins secreted from exosomes increased by 3-4-fold under hypoxic conditions. Moreover, hypoxia-derived exosomes promoted lipid accumulation in recipient 3T3-L1 adipocytes, compared with those produced under normoxic conditions. FASN levels were increased in undifferentiated 3T3-L1 cells treated with FASN-containing hypoxic adipocytes-derived exosomes. This is a study to characterize the proteomic profiles of adipocyte-derived exosomes. Exosomal proteins derived from hypoxic adipocytes may affect lipogenic activity in neighboring preadipocytes and adipocytes.


International Immunology | 2012

Dynamic regulation of Th17 differentiation by oxygen concentrations

Ai Ikejiri; Shigenori Nagai; Nobuhito Goda; Yutaka Kurebayashi; Mayuko Osada-Oka; Keiyo Takubo; Toshio Suda; Shigeo Koyasu

Naive CD4(+) T cells are activated by antigen-presenting cells (APCs) and differentiate into distinct types of helper T (T(h)) cells in the lymph node or spleen. Oxygen (O(2)) tension is generally low in these secondary lymphoid tissues compared with the bloodstream or atmosphere. However, the effect of changes in O(2) concentration on the differentiation of T(h) cells remains unclear. Here, we established a novel model of T(h)-cell differentiation, which mimics physiological O(2) conditions. We primed naive CD4(+) T cells under 5% O(2), which has been observed in the lymph node or spleen and reoxygenated under normoxia that mimicked the O(2) concentration in blood. In this model, the differentiation of T(h)17 cells, but not T(h)1 or iTreg cells, was enhanced. Under the condition of 5% O(2), mammalian target of rapamycin complex 1 (mTORC1) was activated and led to the stabilization of hypoxia-inducible factor 1α (HIF-1α) in T(h)17 cells. The activation of mTORC1 and the acceleration of T(h)17-cell differentiation, which occurred when cells were primed under 5% O(2), were not observed in the absence of HIF-1α but were accelerated in the absence of von Hippel-Lindau tumor suppressor protein (vHL), a factor critical for HIF-1α degradation. Thus, a positive feedback loop between HIF-1α and mTORC1 induced by hypoxia followed by reoxygenation accelerates T(h)17-cell differentiation.


International Immunology | 2010

Transient role of CD4+CD25+ regulatory T cells in mycobacterial infection in mice

Yuriko Ozeki; Isamu Sugawara; Tadashi Udagawa; Toshiaki Aoki; Mayuko Osada-Oka; Yoshitaka Tateishi; Hajime Hisaeda; Yuji Nishiuchi; Nobuyuki Harada; Kazuo Kobayashi; Sohkichi Matsumoto

CD4(+)CD25(+) regulatory T (Treg) cells cause immune suppression by inhibiting T cell effector functions and play pivotal roles not only in self-tolerance but also in immune response to parasitic microbial pathogens. Mycobacteria are major parasitic bacterial pathogens, but the role of CD4(+)CD25(+) Treg cells in mycobacterial infection is not yet defined. In this study we found that, at the early stage of infection, depletion of CD25(+) cells reduced both bacterial load and granuloma formation in mice infected with Mycobacterium tuberculosis strains, such as M. tuberculosis Erdman or M. tuberculosis Kurono. However, at a later stage of infection, bacterial burden and histopathology were similar regardless of depletion of CD25(+) cells. Severe combined immunodeficient (SCID) mice reconstituted with CD4(+)CD25(-) T cells alone or a combination of CD4(+)CD25(+) and CD4(+)CD25(-) T cells showed similar bacterial loads and survival kinetics after infection with M. tuberculosis Erdman. Consistent with in vivo data, in vitro studies revealed that mycobacterial antigens, purified protein derivative of tuberculin (PPD), failed to induce the suppressive function of CD4(+)CD25(+) Treg cells to CD4(+)CD25(-) effector T cells, as demonstrated by the lack of response of CD4(+)CD25(+) T cells to PPD, in mice chronically infected with Mycobacterium bovis bacillus Calmette-Guérin and M. tuberculosis. Our data show that CD4(+)CD25(+) Treg cells have a transient effect at the early stage of mycobacterial infection but, contrary to the expectation, have little impact on the overall course of infection.


PLOS ONE | 2011

A Histone-Like Protein of Mycobacteria Possesses Ferritin Superfamily Protein-Like Activity and Protects against DNA Damage by Fenton Reaction

Masaki Takatsuka; Mayuko Osada-Oka; Eisuke F. Satoh; Kengo Kitadokoro; Yukiko Nishiuchi; Mamiko Niki; Masayasu Inoue; Kazuhiro Iwai; Tetsuo Arakawa; Yoshihiro Shimoji; Hisashi Ogura; Kazuo Kobayashi; Anura Rambukkana; Sohkichi Matsumoto

Iron is an essential metal for living organisms but its level must be strictly controlled in cells, because ferrous ion induces toxicity by generating highly active reactive oxygen, hydroxyl radicals, through the Fenton reaction. In addition, ferric ion shows low solubility under physiological conditions. To overcome these obstacles living organisms possess Ferritin superfamily proteins that are distributed in all three domains of life: bacteria, archaea, and eukaryotes. These proteins minimize hydroxyl radical formation by ferroxidase activity that converts Fe2+ into Fe3+ and sequesters iron by storing it as a mineral inside a protein cage. In this study, we discovered that mycobacterial DNA-binding protein 1 (MDP1), a histone-like protein, has similar activity to ferritin superfamily proteins. MDP1 prevented the Fenton reaction and protects DNA by the ferroxidase activity. The K m values of the ferroxidase activity by MDP1 of Mycobacterium bovis bacillus Calmette-Guérin (BCG-3007c), Mycobacterium tuberculosis (Rv2986c), and Mycobacterium leprae (ML1683; ML-LBP) were 0.292, 0.252, and 0.129 mM, respectively. Furthermore, one MDP1 molecule directly captured 81.4±19.1 iron atoms, suggesting the role of this protein in iron storage. This study describes for the first time a ferroxidase-iron storage protein outside of the ferritin superfamily proteins and the protective role of this bacterial protein from DNA damage.


Circulation-heart Failure | 2012

Tolvaptan Improves Left Ventricular Dysfunction after Myocardial Infarction in Rats

Takanori Yamazaki; Yasukatsu Izumi; Yasuhiro Nakamura; Naoto Yamashita; Hiroyuki Fujiki; Mayuko Osada-Oka; Masayuki Shiota; Akihisa Hanatani; Kenei Shimada; Hiroshi Iwao; Minoru Yoshiyama

Background—Arginine vasopressin, which promotes the reabsorption of renal water is increased in chronic heart failure. Here, we compared the effects of tolvaptan, a newly developed nonpeptide V2 receptor antagonist, with those of furosemide, a loop diuretic, and a combination of these 2 agents in rats with left ventricular dysfunction after myocardial infarction (MI). Methods and Results—After 10 weeks of MI induction, the rats were separated them into the following 6 groups adjusted to the infarct size: a vehicle group, a group treated with 15 mg·kg-1·day-1 of furosemide, 2 groups treated with 3 or 10 mg·kg−1·day−1 of tolvaptan; and 2 groups treated with 15 mg·kg−1·day−1 of furosemide plus 3 or 10 mg·kg−1·day−1 tolvaptan. Each treatment agent was administered for 4 weeks, and all groups had similar blood pressure levels and infarct size. The tolvaptan-treated groups were found to have lower levels of left ventricular end-diastolic and systolic cardiac volumes than the vehicle group did. Furthermore, the improvement in the ejection fraction in the tolvaptan-treated groups was significantly greater than those in the vehicle group. ED-1 immunostaining and Sirius red staining revealed that tolvaptan significantly repressed MI-induced macrophage infiltration and interstitial fibrosis in the left ventricle, respectively. Tolvaptan attenuated the MI-induced mRNA expressions of atrial and brain natriuretic peptides, monocyte chemotactic protein-1, transforming growth factor-&bgr;1, arginine vasopressin V1a receptor, and endothelin-1 in the marginal infarct region. Conclusions—Tolvaptan may improve cardiac dysfunction after MI, which is partially mediated by the suppression of V1a receptor, neurohumoral activation and inflammation.


Hypertension Research | 2017

Macrophage-derived exosomes induce inflammatory factors in endothelial cells under hypertensive conditions

Mayuko Osada-Oka; Masayuki Shiota; Yasukatsu Izumi; Masaki Nishiyama; Masako Tanaka; Takehiro Yamaguchi; Emi Sakurai; Katsuyuki Miura; Hiroshi Iwao

Hypertension is one of the most important cardiovascular risk factors and results in macrophage infiltration of blood vessels. However, how macrophages coordinate inflammatory responses with endothelial cells (ECs) remains unclear. In this study, we investigated whether exosomes upregulate the expression of inflammatory factors in ECs under hypertensive conditions. Hypertension was induced in rats by continuous infusion of angiotensin II (Ang II). Exosomes were purified from rat serum by density gradient and ultracentrifugation and used to stimulate human coronary artery ECs (HCAECs). Moreover, the interactions between HCAECs and exosomes from human THP-1-derived macrophages were analyzed. Administration of Ang II enhanced the expression of CD68, a macrophage marker, in rat hearts, suggesting enhanced infiltration of macrophages. In addition, the expression of intracellular adhesion molecule-1 (ICAM1) and plasminogen activator inhibitor-1 (PAI-1), a proinflammatory factor, was increased in hypertensive rat hearts compared with control rats. CD68 protein expression and an increase in the expression of some exosome markers were detected in exosomes from hypertensive rat serum. Moreover, the exosomes upregulated the expression levels of ICAM1 and PAI-1 in HCAECs. The level of miR-17, a negative regulator of ICAM1 expression, was markedly decreased in exosomes from hypertensive rat serum compared with exosomes from control rats. Interestingly, Ang II-stimulated THP-1-derived exosomes also enhanced the expression of ICAM1 and PAI-1 and contained reduced levels of miR-17 compared with exosomes from unstimulated cells. These results suggest that inflammation of ECs under hypertensive conditions is caused, at least in part, by macrophage-derived exosomes.


PLOS Neglected Tropical Diseases | 2014

Serological surveillance development for tropical infectious diseases using simultaneous microsphere-based multiplex assays and finite mixture models.

Yoshito Fujii; Satoshi Kaneko; Samson Muuo Nzou; Matilu Mwau; Sammy M. Njenga; Chihiro Tanigawa; James Kimotho; Anne Wanjiru Mwangi; Ibrahim Kiche; Sohkichi Matsumoto; Mamiko Niki; Mayuko Osada-Oka; Yoshio Ichinose; Manabu Inoue; Makoto Itoh; Hiroshi Tachibana; Kazunari Ishii; Takafumi Tsuboi; Lay Myint Yoshida; Dinesh Mondal; Rashidul Haque; Shinjiro Hamano; Mwatasa Changoma; Tomonori Hoshi; Ken-ichi Kamo; Mohamed Karama; Masashi Miura; Kenji Hirayama

Background A strategy to combat infectious diseases, including neglected tropical diseases (NTDs), will depend on the development of reliable epidemiological surveillance methods. To establish a simple and practical seroprevalence detection system, we developed a microsphere-based multiplex immunoassay system and evaluated utility using samples obtained in Kenya. Methods We developed a microsphere-based immuno-assay system to simultaneously measure the individual levels of plasma antibody (IgG) against 8 antigens derived from 6 pathogens: Entamoeba histolytica (C-IgL), Leishmania donovani (KRP42), Toxoplasma gondii (SAG1), Wuchereria bancrofti (SXP1), HIV (gag, gp120 and gp41), and Vibrio cholerae (cholera toxin). The assay system was validated using appropriate control samples. The assay system was applied for 3411 blood samples collected from the general population randomly selected from two health and demographic surveillance system (HDSS) cohorts in the coastal and western regions of Kenya. The immunoassay values distribution for each antigen was mathematically defined by a finite mixture model, and cut-off values were optimized. Findings Sensitivities and specificities for each antigen ranged between 71 and 100%. Seroprevalences for each pathogen from the Kwale and Mbita HDSS sites (respectively) were as follows: HIV, 3.0% and 20.1%; L. donovani, 12.6% and 17.3%; E. histolytica, 12.8% and 16.6%; and T. gondii, 30.9% and 28.2%. Seroprevalences of W. bancrofti and V. cholerae showed relatively high figures, especially among children. The results might be affected by immunological cross reactions between W. bancrofti-SXP1 and other parasitic infections; and cholera toxin and the enterotoxigenic E. coli (ETEC), respectively. Interpretation A microsphere-based multi-serological assay system can provide an opportunity to comprehensively grasp epidemiological features for NTDs. By adding pathogens and antigens of interest, optimized made-to-order high-quality programs can be established to utilize limited resources to effectively control NTDs in Africa.


PLOS ONE | 2014

Hsc70 contributes to cancer cell survival by preventing Rab1A degradation under stress conditions.

Masako Tanaka; Saya Mun; Akihito Harada; Yasuyuki Ohkawa; Azusa Inagaki; Soichi Sano; Katsuyuki Takahashi; Yasukatsu Izumi; Mayuko Osada-Oka; Hideki Wanibuchi; Masayo Yamagata; Tokihito Yukimura; Katsuyuki Miura; Masayuki Shiota; Hiroshi Iwao

Heat shock cognate protein 70 (Hsc70) acts as a molecular chaperone for the maintenance of intracellular proteins, which allows cancer cells to survive under proteotoxic stress. We attempted to use Hsc70 to identify key molecules in cancer cell survival. Here, we performed mass-spectrometry-based proteomics analysis utilizing affinity purification with anti-Hsc70 antibodies; as a result, 83 differentially expressed proteins were identified under stress conditions. This result implies that there was a change in the proteins with which Hsc70 interacted in response to stress. Among the proteins identified under both serum-depleted and 5-fluorouracil-treated conditions, Rab1A was identified as an essential molecule for cancer cell survival. Hsc70 interacted with Rab1A in a chaperone-dependent manner. In addition, Hsc70 knockdown decreased the level of Rab1A and increased the level of its ubiquitination under stress conditions, suggesting that Hsc70 prevented the degradation of Rab1A denatured by stress exposure. We also found that Rab1A knockdown induced cell death by inhibition of autophagosome formation. Rab1A may therefore contribute to overcoming proteotoxic insults, which allows cancer cells to survive under stress conditions. Analysis of Hsc70 interactors provided insight into changes of intracellular status. We expect further study of the Hsc70 interactome to provide a more comprehensive understanding of cancer cell physiology.


Journal of Pharmacological Sciences | 2015

Myeloid HIF-1 attenuates the progression of renal fibrosis in murine obstructive nephropathy.

Yu Tateishi; Mayuko Osada-Oka; Masako Tanaka; Masayuki Shiota; Yasukatsu Izumi; Eiji Ishimura; Koka Motoyama; Masaaki Inaba; Katsuyuki Miura

Hypoxia-inducible factors (HIFs) play an important role in the pathogenesis of renal fibrosis. Although the role of macrophage infiltration in the progression of renal fibrosis is well known, the role of macrophage HIF-1 remains to be revealed. To address this question, myeloid specific conditional HIF-1 knock out mice were subjected to unilateral ureteral obstruction (UUO). Renal interstitial deposition of collagen Ⅲ and mRNA expressions of collagen Ⅰ and collagen Ⅲ were markedly increased at 7 days after UUO and myeloid HIF-1 depletion significantly accelerated these increases. Immunohistochemistry and flow cytometric analysis revealed that renal infiltrating macrophages were increased with duration of UUO but myeloid HIF-1 depletion did not affect these changes. Myeloid HIF-1 depletion did not affect M1 and M2 macrophage phenotype polarization in obstructed kidneys. Renal connective tissue growth factor (CTGF) expression was markedly increased and myeloid HIF-1 depletion further enhanced this increase. Immunomagnetic separation of renal cells revealed that renal CTGF was expressed predominantly in renal cells other than macrophages. It is suggested that myeloid HIF-1 attenuates the progression of renal fibrosis in murine obstructive kidney. Alteration of CTGF expression in renal cells other than macrophages is one of possible mechanisms by which myeloid HIF-1 protected renal fibrosis.

Collaboration


Dive into the Mayuko Osada-Oka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katsuyuki Miura

Shiga University of Medical Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge