Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mayuko Sato.
Nature Immunology | 2012
Takashi Kanaya; Koji Hase; Daisuke Takahashi; Shinji Fukuda; Katsuaki Hoshino; Izumi Sasaki; Hiroaki Hemmi; Kathryn Knoop; Nachiket Kumar; Mayuko Sato; Tatsuro Katsuno; Osamu Yokosuka; Kiminori Toyooka; Kumiko Nakai; Ayako Sakamoto; Yuuki Kitahara; Toshi Jinnohara; Stephen J. McSorley; Tsuneyasu Kaisho; Ifor R. Williams; Hiroshi Ohno
Intestinal microfold cells (M cells) are an enigmatic lineage of intestinal epithelial cells that initiate mucosal immune responses through the uptake and transcytosis of luminal antigens. The mechanisms of M-cell differentiation are poorly understood, as the rarity of these cells has hampered analysis. Exogenous administration of the cytokine RANKL can synchronously activate M-cell differentiation in mice. Here we show the Ets transcription factor Spi-B was induced early during M-cell differentiation. Absence of Spi-B silenced the expression of various M-cell markers and prevented the differentiation of M cells in mice. The activation of T cells via an oral route was substantially impaired in the intestine of Spi-B-deficient (Spib−/−) mice. Our study demonstrates that commitment to the intestinal M-cell lineage requires Spi-B as a candidate master regulator.
Science | 2014
Bo Xu; Misato Ohtani; Masatoshi Yamaguchi; Kiminori Toyooka; Mayumi Wakazaki; Mayuko Sato; Minoru Kubo; Yoshimi Nakano; Ryosuke Sano; Yuji Hiwatashi; Takashi Murata; Tetsuya Kurata; Arata Yoneda; Ko Kato; Mitsuyasu Hasebe; Taku Demura
From Drips to Tubes In the evolutionary transition from aquatic to terrestrial habitats, plants acquired internal systems to transport water and provide structural support. Xu et al. (p. 1505, published online 20 March) studied a family of genes and the cells they control to better understand the innovations required to adapt to dry land. In Arabidopsis, specific transcription factors regulate development of xylem—the plant tissue that transports water. The moss Physcomitrella patens has similar genes, which regulate development of hydroids and stereids, cells specialized in water transport and structural support. The similarity in the genes and their functions suggests the evolutionary origins of land-plant vascular systems. Similarities are revealed in the generation of internal water transport systems in moss and Arabidopsis. The development of cells specialized for water conduction or support is a striking innovation of plants that has enabled them to colonize land. The NAC transcription factors regulate the differentiation of these cells in vascular plants. However, the path by which plants with these cells have evolved from their nonvascular ancestors is unclear. We investigated genes of the moss Physcomitrella patens that encode NAC proteins. Loss-of-function mutants formed abnormal water-conducting and supporting cells, as well as malformed sporophyte cells, and overexpression induced ectopic differentiation of water-conducting–like cells. Our results show conservation of transcriptional regulation and cellular function between moss and Arabidopsis thaliana water-conducting cells. The conserved genetic basis suggests roles for NAC proteins in the adaptation of plants to land.
The Plant Cell | 2012
Koichi Kobayashi; Shinsuke Baba; Takeshi Obayashi; Mayuko Sato; Kiminori Toyooka; Mika Keränen; Eva-Mari Aro; Hidehiro Fukaki; Hiroyuki Ohta; Keiko Sugimoto; Tatsuru Masuda
Differentiation of plastids is tightly coordinated with plant development. This work shows that the development of chloroplasts in Arabidopsis roots is regulated in opposing directions by plant hormones auxin and cytokinin. Two types of transcription factors, HY5 and GLKs, are involved in this regulation; the former is a pivotal factor, and the latter is a potent activator for root greening. Tight coordination between plastid differentiation and plant development is best evidenced by the synchronized development of photosynthetic tissues and the biogenesis of chloroplasts. Here, we show that Arabidopsis thaliana roots demonstrate accelerated chlorophyll accumulation and chloroplast development when they are detached from shoots. However, this phenomenon is repressed by auxin treatment. Mutant analyses suggest that auxin transported from the shoot represses root greening via the function of INDOLE-3-ACETIC ACID14, AUXIN RESPONSE FACTOR7 (ARF7), and ARF19. Cytokinin signaling, on the contrary, is required for chlorophyll biosynthesis in roots. The regulation by auxin/cytokinin is dependent on the transcription factor LONG HYPOCOTYL5 (HY5), which is required for the expression of key chlorophyll biosynthesis genes in roots. The expression of yet another root greening transcription factor, GOLDEN2-LIKE2 (GLK2), was found to be regulated in opposing directions by auxin and cytokinin. Furthermore, both the hormone signaling and the GLK transcription factors modified the accumulation of HY5 in roots. Overexpression of GLKs in the hy5 mutant provided evidence that GLKs require HY5 to maximize their activities in root greening. We conclude that the combination of HY5 and GLKs, functioning downstream of light and auxin/cytokinin signaling pathways, is responsible for coordinated expression of the key genes in chloroplast biogenesis.
Journal of Cell Science | 2014
Kohki Yoshimoto; Michitaro Shibata; Maki Kondo; Kazusato Oikawa; Mayuko Sato; Kiminori Toyooka; Ken Shirasu; Mikio Nishimura; Yoshinori Ohsumi
ABSTRACT Peroxisomes are essential organelles that are characterized by the possession of enzymes that produce hydrogen peroxide (H2O2) as part of their normal catalytic cycle. During the metabolic process, peroxisomal proteins are inevitably damaged by H2O2 and the integrity of the peroxisomes is impaired. Here, we show that autophagy, an intracellular process for vacuolar degradation, selectively degrades dysfunctional peroxisomes. Marked accumulation of peroxisomes was observed in the leaves but not roots of autophagy-related (ATG)-knockout Arabidopsis thaliana mutants. The peroxisomes in leaf cells contained markedly increased levels of catalase in an insoluble and inactive aggregate form. The chemically inducible complementation system in ATG5-knockout Arabidopsis provided the evidence that these accumulated peroxisomes were delivered to vacuoles for degradation by autophagy. Interestingly, autophagosomal membrane structures specifically recognized the abnormal peroxisomes at the site of the aggregates. Thus, autophagy is essential for the quality control of peroxisomes in leaves and for proper plant development under natural growth conditions.
Science | 2017
Koji Atarashi; Wataru Suda; Chengwei Luo; Takaaki Kawaguchi; Iori Motoo; Seiko Narushima; Yuya Kiguchi; Keiko Yasuma; Eiichiro Watanabe; Takeshi Tanoue; Christoph A. Thaiss; Mayuko Sato; Kiminori Toyooka; Heba S. Said; Hirokazu Yamagami; Scott A. Rice; Dirk Gevers; Ryan C. Johnson; Julia A. Segre; Kong Chen; Jay K. Kolls; Eran Elinav; Hidetoshi Morita; Ramnik J. Xavier; Masahira Hattori; Kenya Honda
Gut reasons to brush your teeth Some gut conditions, such as inflammatory bowel disease (IBD), ulcerative colitis, and Crohns disease (CD), are associated with imbalances in the gut microbe community. The causes of these intractable diseases have been difficult to discern. Atarashi et al. took samples from the mouths of IBD and CD patients and inoculated the extracted bacteria into germ-free mice (see the Perspective by Cao). Some of the inoculated mice showed strong proliferation of T helper 1 cells associated with the establishment of oral Klebsiella species in the colon. Klebsiella can be resistant to multiple antibiotics and are able to replace normal colon microbes after antibiotic therapy. Now we know that they probably originate from the mouth and could potentially contribute to bowel disease. Science, this issue p. 359; see also p. 308 The mouth may act as a reservoir for intestinal disease-causing bacteria. Intestinal colonization by bacteria of oral origin has been correlated with several negative health outcomes, including inflammatory bowel disease. However, a causal role of oral bacteria ectopically colonizing the intestine remains unclear. Using gnotobiotic techniques, we show that strains of Klebsiella spp. isolated from the salivary microbiota are strong inducers of T helper 1 (TH1) cells when they colonize in the gut. These Klebsiella strains are resistant to multiple antibiotics, tend to colonize when the intestinal microbiota is dysbiotic, and elicit a severe gut inflammation in the context of a genetically susceptible host. Our findings suggest that the oral cavity may serve as a reservoir for potential intestinal pathobionts that can exacerbate intestinal disease.
Plant Journal | 2013
Koichi Kobayashi; Takafumi Narise; Kintake Sonoike; Haruki Hashimoto; Naoki Sato; Maki Kondo; Mikio Nishimura; Mayuko Sato; Kiminori Toyooka; Keiko Sugimoto; Hajime Wada; Tatsuru Masuda; Hiroyuki Ohta
The galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the predominant lipids in thylakoid membranes and indispensable for photosynthesis. Among the three isoforms that catalyze MGDG synthesis in Arabidopsis thaliana, MGD1 is responsible for most galactolipid synthesis in chloroplasts, whereas MGD2 and MGD3 are required for DGDG accumulation during phosphate (Pi) starvation. A null mutant of Arabidopsis MGD1 (mgd1-2), which lacks both galactolipids and shows a severe defect in chloroplast biogenesis under nutrient-sufficient conditions, accumulated large amounts of DGDG, with a strong induction of MGD2/3 expression, during Pi starvation. In plastids of Pi-starved mgd1-2 leaves, biogenesis of thylakoid-like internal membranes, occasionally associated with invagination of the inner envelope, was observed, together with chlorophyll accumulation. Moreover, the mutant accumulated photosynthetic membrane proteins upon Pi starvation, indicating a compensation for MGD1 deficiency by Pi stress-induced galactolipid biosynthesis. However, photosynthetic activity in the mutant was still abolished, and light-harvesting/photosystem core complexes were improperly formed, suggesting a requirement for MGDG for proper assembly of these complexes. During Pi starvation, distribution of plastid nucleoids changed concomitantly with internal membrane biogenesis in the mgd1-2 mutant. Moreover, the reduced expression of nuclear- and plastid-encoded photosynthetic genes observed in the mgd1-2 mutant under Pi-sufficient conditions was restored after Pi starvation. In contrast, Pi starvation had no such positive effects in mutants lacking chlorophyll biosynthesis. These observations demonstrate that galactolipid biosynthesis and subsequent membrane biogenesis inside the plastid strongly influence nucleoid distribution and the expression of both plastid- and nuclear-encoded photosynthetic genes, independently of photosynthesis.
Journal of Biological Chemistry | 2009
Kenta Tsunekawa; Toshiaki Shijuku; Mitsuo Hayashimoto; Yoichi Kojima; Kiyoshi Onai; Megumi Morishita; Masahiro Ishiura; Teruo Kuroda; Tatsunosuke Nakamura; Hiroshi Kobayashi; Mayuko Sato; Kiminori Toyooka; Ken Matsuoka; Tatsuo Omata; Nobuyuki Uozumi
Na+/H+ antiporters influence proton or sodium motive force across the membrane. Synechocystis sp. PCC 6803 has six genes encoding Na+/H+ antiporters, nhaS1–5 and sll0556. In this study, the function of NhaS3 was examined. NhaS3 was essential for growth of Synechocystis, and loss of nhaS3 was not complemented by expression of the Escherichia coli Na+/H+ antiporter NhaA. Membrane fractionation followed by immunoblotting as well as immunogold labeling revealed that NhaS3 was localized in the thylakoid membrane of Synechocystis. NhaS3 was shown to be functional over a pH range from pH 6.5 to 9.0 when expressed in E. coli. A reduction in the copy number of nhaS3 in the Synechocystis genome rendered the cells more sensitive to high Na+ concentrations. NhaS3 had no K+/H+ exchange activity itself but enhanced K+ uptake from the medium when expressed in an E. coli potassium uptake mutant. Expression of nhaS3 increased after shifting from low CO2 to high CO2 conditions. Expression of nhaS3 was also found to be controlled by the circadian rhythm. Gene expression peaked at the beginning of subjective night. This coincided with the time of the lowest rate of CO2 consumption caused by the ceasing of O2-evolving photosynthesis. This is the first report of a Na+/H+ antiporter localized in thylakoid membrane. Our results suggested a role of NhaS3 in the maintenance of ion homeostasis of H+, Na+, and K+ in supporting the conversion of photosynthetic products and in the supply of energy in the dark.
Plant and Cell Physiology | 2013
Koichi Kobayashi; Daichi Sasaki; Ko Noguchi; Daiki Fujinuma; Hirohisa Komatsu; Masami Kobayashi; Mayuko Sato; Kiminori Toyooka; Keiko Sugimoto; Krishna K. Niyogi; Hajime Wada; Tatsuru Masuda
In plants, genes involved in photosynthesis are encoded separately in nuclei and plastids, and tight cooperation between these two genomes is therefore required for the development of functional chloroplasts. Golden2-like (GLK) transcription factors are involved in chloroplast development, directly targeting photosynthesis-associated nuclear genes for up-regulation. Although overexpression of GLKs leads to chloroplast development in non-photosynthetic organs, the mechanisms of coordination between the nuclear gene expression influenced by GLKs and the photosynthetic processes inside chloroplasts are largely unknown. To elucidate the impact of GLK-induced expression of photosynthesis-associated nuclear genes on the construction of photosynthetic systems, chloroplast morphology and photosynthetic characteristics in greenish roots of Arabidopsis thaliana lines overexpressing GLKs were compared with those in wild-type roots and leaves. Overexpression of GLKs caused up-regulation of not only their direct targets but also non-target nuclear and plastid genes, leading to global induction of chloroplast biogenesis in the root. Large antennae relative to reaction centers were observed in wild-type roots and were further enhanced by GLK overexpression due to the increased expression of target genes associated with peripheral light-harvesting antennae. Photochemical efficiency was lower in the root chloroplasts than in leaf chloroplasts, suggesting that the imbalance in the photosynthetic machinery decreases the efficiency of light utilization in root chloroplasts. Despite the low photochemical efficiency, root photosynthesis contributed to carbon assimilation in Arabidopsis. Moreover, GLK overexpression increased CO₂ fixation and promoted phototrophic performance of the root, showing the potential of root photosynthesis to improve effective carbon utilization in plants.
Plant Physiology | 2016
Yoshiko Toyosawa; Yasushi Kawagoe; Ryo Matsushima; Naoko Crofts; Masahiro Ogawa; Masako Fukuda; Toshihiro Kumamaru; Yozo Okazaki; Miyako Kusano; Kazuki Saito; Kiminori Toyooka; Mayuko Sato; Yongfeng Ai; Jay Lin Jane; Yasunori Nakamura; Naoko Fujita
Deficiency of starch synthases IIIa and IVb, which elongate the long chains of amylopectin, drastically changes starch granule morphology from polyhedral to spherical in rice endosperm. Starch granule morphology differs markedly among plant species. However, the mechanisms controlling starch granule morphology have not been elucidated. Rice (Oryza sativa) endosperm produces characteristic compound-type granules containing dozens of polyhedral starch granules within an amyloplast. Some other cereal species produce simple-type granules, in which only one starch granule is present per amyloplast. A double mutant rice deficient in the starch synthase (SS) genes SSIIIa and SSIVb (ss3a ss4b) produced spherical starch granules, whereas the parental single mutants produced polyhedral starch granules similar to the wild type. The ss3a ss4b amyloplasts contained compound-type starch granules during early developmental stages, and spherical granules were separated from each other during subsequent amyloplast development and seed dehydration. Analysis of glucan chain length distribution identified overlapping roles for SSIIIa and SSIVb in amylopectin chain synthesis, with a degree of polymerization of 42 or greater. Confocal fluorescence microscopy and immunoelectron microscopy of wild-type developing rice seeds revealed that the majority of SSIVb was localized between starch granules. Therefore, we propose that SSIIIa and SSIVb have crucial roles in determining starch granule morphology and in maintaining the amyloplast envelope structure. We present a model of spherical starch granule production.
Plant Journal | 2013
Takashi Osanai; Ayuko Kuwahara; Hiroko Iijima; Kiminori Toyooka; Mayuko Sato; Kan Tanaka; Masahiko Ikeuchi; Kazuki Saito; Masami Yokota Hirai
Over-expression of sigE, a gene encoding an RNA polymerase sigma factor in the unicellular cyanobacterium Synechocystis sp. PCC 6803, is known to activate sugar catabolism and bioplastic production. In this study, we investigated the effects of sigE over-expression on cell morphology, photosynthesis and hydrogen production in this cyanobacterium. Transmission electron and scanning probe microscopic analyses revealed that sigE over-expression increased the cell size, possibly as a result of aberrant cell division. Over-expression of sigE reduced respiration and photosynthesis activities via changes in gene expression and chlorophyll fluorescence. Hydrogen production under micro-oxic conditions is enhanced in sigE over-expressing cells. Despite these pleiotropic phenotypes, the sigE over-expressing strain showed normal cell viability under both nitrogen-replete and nitrogen-depleted conditions. These results provide insights into the inter-relationship among metabolism, cell morphology, photosynthesis and hydrogen production in this unicellular cyanobacterium.