Mayuree Fuangthong
Chulabhorn Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mayuree Fuangthong.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Mayuree Fuangthong; John D. Helmann
Reactive oxygen species induce the expression of detoxification and repair genes critical for life in an aerobic environment. Bacterial factors that sense reactive oxygen species use either thiol-disulfide exchange reactions (OxyR, RsrA) or redox labile 2Fe–2S clusters (SoxR). We demonstrate that the reduced form of Bacillus subtilis OhrR binds cooperatively to two adjacent inverted repeat sequences in the ohrA control region and thereby represses transcription. In the presence of organic hydroperoxides, OhrR is inactivated by the reversible oxidation of a single conserved cysteine residue to the corresponding cysteine-sulfenic acid, and perhaps to higher oxidation states.
Journal of Bacteriology | 2001
Mayuree Fuangthong; Sopapan Atichartpongkul; Skorn Mongkolsuk; John D. Helmann
Bacillus subtilis displays a complex adaptive response to the presence of reactive oxygen species. To date, most proteins that protect against reactive oxygen species are members of the peroxide-inducible PerR and sigma(B) regulons. We investigated the function of two B. subtilis homologs of the Xanthomonas campestris organic hydroperoxide resistance (ohr) gene. Mutational analyses indicate that both ohrA and ohrB contribute to organic peroxide resistance in B. subtilis, with the OhrA protein playing the more important role in growing cells. Expression of ohrA, but not ohrB, is strongly and specifically induced by organic peroxides. Regulation of ohrA requires the convergently transcribed gene, ohrR, which encodes a member of the MarR family of transcriptional repressors. In an ohrR mutant, ohrA expression is constitutive, whereas expression of the neighboring ohrB gene is unaffected. Selection for mutant strains that are derepressed for ohrA transcription identifies a perfect inverted repeat sequence that is required for OhrR-mediated regulation and likely defines an OhrR binding site. Thus, B. subtilis contains at least three regulons (sigma(B), PerR, and OhrR) that contribute to peroxide stress responses.
Journal of Bacteriology | 2002
Mayuree Fuangthong; Andrew F. Herbig; Nada Bsat; John D. Helmann
PerR is a ferric uptake repressor (Fur) homolog that functions as the central regulator of the inducible peroxide stress response in Bacillus subtilis. PerR has been previously demonstrated to regulate the mrgA, katA, ahpCF, hemAXCDBL, and zosA genes. We now demonstrate that PerR also mediates both the repression of its own gene and that of fur. Whereas PerR-mediated repression of most target genes can be elicited by either manganese or iron, repression of perR and fur is selective for manganese. Genetic studies indicate that repression of PerR regulon genes by either manganese or iron requires PerR and is generally independent of Fur. Indeed, in a fur mutant, iron-mediated repression is enhanced. Unexpectedly, repression of the fur gene by manganese appears to require both PerR and Fur, but only PerR binds to the fur regulatory region in vitro. The fur mutation appears to act indirectly by affecting cellular metal ion pools and thereby affecting PerR-mediated repression. While many components of the perR regulon are strongly induced by hydrogen peroxide, little, if any, induction of fur and perR could be demonstrated. Thus, not all components of the PerR regulon are components of the peroxide stimulon. We suggest that PerR exists in distinct metallated forms that differ in DNA target selectivity and in sensitivity to oxidation. This model is supported by the observation that the metal ion composition of the growth medium can greatly influence the transcriptional response of the various PerR regulon genes to hydrogen peroxide.
Journal of Bacteriology | 2003
Mayuree Fuangthong; John D. Helmann
Bacillus subtilis contains three Fur homologs: Fur, PerR, and Zur. Despite significant sequence similarities, they respond to different stimuli and regulate different sets of genes. DNA target site comparisons indicate that all three paralogs recognize operators with a core 7-1-7 inverted repeat. The corresponding consensus sequences are identical at five or more of the seven defined positions. Using site-directed mutagenesis, the Per box at the mrgA promoter was altered to mimic the core 7-1-7 motif of the Fur and Zur boxes. In vitro, the mrgA promoter containing a Zur box was only recognized by Zur, as demonstrated by DNase I footprinting assays. In contrast, both Fur and PerR bound to the mrgA promoter region containing a consensus Fur box. Expression analysis of these promoters is consistent with the in vitro data demonstrating as few as 1 or 2 base changes per half-site are sufficient to alter regulation. Similarly, the Fur box at the feuA promoter can be converted into a Per or a Zur box by appropriate mutations. While both Fur and PerR could recognize some of the same synthetic operator sequences, no naturally occurring sites are known that are subject to dual regulation. However, the PerR-regulated zosA gene is controlled from a regulatory region that contains both Per and Fur boxes. Although purified Fur protein bound to the candidate Fur boxes, Fur has little effect on zosA expression-possibly due to the location of the Fur boxes relative to the zosA promoter. Together, our results identify two nucleotide positions that are important for the ability of PerR, Fur, and Zur to distinguish among the many closely related operator sites present in the B. subtilis genome.
Journal of Bacteriology | 2000
Skorn Mongkolsuk; Wirongrong Whangsuk; Paiboon Vattanaviboon; Suvit Loprasert; Mayuree Fuangthong
Alkyl hydroperoxide reductase subunit C (AhpC) is the catalytic subunit responsible for alkyl peroxide metabolism. A Xanthomonas ahpC mutant was constructed. The mutant had increased sensitivity to organic peroxide killing, but was unexpectedly hyperresistant to H(2)O(2) killing. Analysis of peroxide detoxification enzymes in this mutant revealed differential alteration in catalase activities in that its bifunctional catalase-peroxidase enzyme and major monofunctional catalase (Kat1) increased severalfold, while levels of its third growth-phase-regulated catalase (KatE) did not change. The increase in catalase activities was a compensatory response to lack of AhpC, and the phenotype was complemented by expression of a functional ahpC gene. Regulation of the catalase compensatory response was complex. The Kat1 compensatory response increase in activity was mediated by OxyR, since it was abolished in an oxyR mutant. In contrast, the compensatory response increase in activity for the bifunctional catalase-peroxidase enzyme was mediated by an unknown regulator, independent of OxyR. Moreover, the mutation in ahpC appeared to convert OxyR from a reduced form to an oxidized form that activated genes in the OxyR regulon in uninduced cells. This complex regulation of the peroxide stress response in Xanthomonas differed from that in other bacteria.
Molecular Microbiology | 2000
Suvit Loprasert; Mayuree Fuangthong; Wirongrong Whangsuk; Sopapan Atichartpongkul; Skorn Mongkolsuk
In Xanthomonas campestris pv. phaseoli, a gene for the alkyl hydroperoxide reductase subunit C (ahpC) had unique patterns of regulation by various forms of OxyR. Reduced OxyR repressed expression of the gene, whereas oxidized OxyR activated its expression. This dual regulation of ahpC is unique and unlike all other OxyR‐regulated genes. The ahpC transcription start site was determined. Analysis of the region upstream of the site revealed promoter sequences that had high homology to the Xanthomonas consensus promoter sequence. Data from gel shift experiments indicated that both reduced and oxidized OxyR could bind to the ahpC regulatory region. Moreover, the reduced and the oxidized forms of OxyR gave different DNase I footprint patterns, indicating that they bound to different sites. The oxidized OxyR binding site overlapped the −35 region of the ahpC promoter by a few bases. This position is consistent with the role of the protein in activating transcription of the gene. Binding of reduced OxyR to the ahpC promoter showed an extended DNase I footprint and DNase I hypersensitive sites, suggesting that binding of the protein caused a shift in the binding site and bending of the target DNA. In addition, binding of reduced OxyR completely blocked the −35 region of the ahpC promoter and prevented binding of RNA polymerase, leading to repression of the gene. Monitoring of the ahpC promoter activity in vivo confirmed the location of the oxidized OxyR binding site required for activation of the promoter. A mutant that separated OxyR regulation from basal ahpC promoter activity was constructed. The mutant was unable to respond to oxidants by increasing ahpC expression. Physiologically, it had a slower aerobic growth rate and was more sensitive to organic peroxide killing. This indicated that oxidant induction of ahpC has important physiological roles in normal growth and during oxidative stress.
Journal of Bacteriology | 2012
Melinda J. Faulkner; Zhen Ma; Mayuree Fuangthong; John D. Helmann
The Bacillus subtilis PerR repressor regulates the adaptive response to peroxide stress. The PerR regulon includes the major vegetative catalase (katA), an iron storage protein (mrgA), an alkylhydroperoxide reductase (ahpCF), a zinc uptake system (zosA), heme biosynthesis enzymes (hemAXCDBL), the iron uptake repressor (fur), and perR itself. A perR null strain is resistant to hydrogen peroxide, accumulates a porphyrin-like compound, and grows very slowly. The poor growth of the perR mutant can be largely accounted for by the elevated expression of two proteins: the KatA catalase and Fur. Genetic studies support a model in which poor growth of the perR null mutant is due to elevated repression of iron uptake by Fur, exacerbated by heme sequestration by the abundant catalase protein. Analysis of the altered-function allele perR991 further supports a link between PerR and iron homeostasis. Strains containing perR991 are peroxide resistant but grow nearly as well as the wild type. Unlike a perR null allele, the perR991 allele (F51S) derepresses KatA, but not Fur, which likely accounts for its comparatively rapid growth.
Journal of Bacteriology | 2010
Sopapan Atichartpongkul; Mayuree Fuangthong; Paiboon Vattanaviboon; Skorn Mongkolsuk
ohrR encodes an organic hydroperoxide sensor and a transcriptional repressor that regulates organic hydroperoxide-inducible expression of a thiol peroxidase gene, ohr, and itself. OhrR binds directly to the operators and represses transcription of these genes. Exposure to an organic hydroperoxide leads to oxidation of OhrR and to subsequent structural changes that result in the loss of the repressors ability to bind to the operators that allow expression of the target genes. Differential induction of ohrR and ohr by tert-butyl hydroperoxide suggests that factors such as the repressors dissociation constants for different operators and the chemical nature of the inducer contribute to OhrR-dependent organic hydroperoxide-inducible gene expression. ohrR and ohr mutants show increased and decreased resistance to organic hydroproxides, respectively, compared to a parental strain. Moreover, the ohrR mutant had a reduced-virulence phenotype in the Pseudomonas aeruginosa-Caenorhabditis elegans pathogenicity model.
Molecular Microbiology | 2002
Skorn Mongkolsuk; Warunya Panmanee; Sopapan Atichartpongkul; Paiboon Vattanaviboon; Wirongrong Whangsuk; Mayuree Fuangthong; Warawan Eiamphungporn; Rojana Sukchawalit; Supa Utamapongchai
ohrR encodes a novel organic peroxide‐inducible transcription repressor, and we have demonstrated that ohrR is regulated at the transcriptional and the post‐transcriptional levels. Primer extension results show that ohrR transcription initiates at the A residue of the ATG translation initiation codon for the ohrR coding sequence. Thus, the gene has a leaderless mRNA. The ohrR promoter (P1) has high homology to the consensus sequence for Xanthomonas promoters, which is reflected in the high in vivo promoter activity of P1. Deletion of a 139 bp fragment containing the P1 promoter showed that the sequences upstream of –35 regions were required for neither the promoter activity nor OhrR autoregulation. In vitro, purified OhrR specifically binds to the P1 promoter. DNase I footprinting of OhrR binding to the P1 revealed a 44 bp region of protection on both DNA strands. The protected regions include the –35 and –10 regions of P1. We suggest that OhrR represses gene expression by blocking RNA polymerase binding to the promoter. There are two steps in the post‐transcriptional regulation of ohrR, namely differential stability and inefficient translation of the mRNA. The bicistronic ohrR–ohr mRNA was highly labile and underwent rapid processing in vivo to give only stable monocistronic ohr mRNA and undetectable ohrR mRNA. Furthermore, the ohrR mRNA was inefficiently translated. We propose that, in uninduced cells, the concentration of OhrR is maintained at low levels by the autoregulation mechanism at the transcriptional levels and by the ohrR mRNA instability coupled with inefficient translation at the post‐transcriptional level. Upon exposure to an organic peroxide, the compound probably interacts with OhrR and prevents it from repressing the P1 promoter, thus allowing high‐level expression of the ohrR–ohr operon. The rapid processing of bicistronic mRNA gives highly stable ohr mRNA and corresponding high levels of Ohr, which remove an organic per‐oxide. Once the peroxide has been removed, the autoregulation mechanism feeds back to inhibit the expression of the operon.
Archives of Microbiology | 2010
Thichakorn Jittawuttipoka; Ratiboot Sallabhan; Paiboon Vattanaviboon; Mayuree Fuangthong; Skorn Mongkolsuk
Iron is essential in numerous cellular functions. Intracellular iron homeostasis must be maintained for cell survival and protection against iron’s toxic effects. Here, we characterize the roles of Xanthomonas campestris pv. campestris (Xcc) fur, which encodes an iron sensor and a transcriptional regulator that acts in iron homeostasis, oxidative stress, and virulence. Herein, we isolated spontaneous Xcc fur mutants that had high intracellular iron concentrations due to constitutively high siderophore levels and increased expression of iron transport genes. These mutants also had reduced aerobic plating efficiency and resistance to peroxide killing. Moreover, one fur mutant was attenuated on a host plant, thus indicating that fur has important roles in the virulence of X. campestris pv. campestris.