Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mazen A. Kheirbek is active.

Publication


Featured researches published by Mazen A. Kheirbek.


Nature | 2011

Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation

Amar Sahay; Kimberly N. Scobie; Alexis S. Hill; C. O'Carroll; Mazen A. Kheirbek; Nesha S. Burghardt; André A. Fenton; Alex Dranovsky; René Hen

Adult hippocampal neurogenesis is a unique form of neural circuit plasticity that results in the generation of new neurons in the dentate gyrus throughout life. Neurons that arise in adults (adult-born neurons) show heightened synaptic plasticity during their maturation and can account for up to ten per cent of the entire granule cell population. Moreover, levels of adult hippocampal neurogenesis are increased by interventions that are associated with beneficial effects on cognition and mood, such as learning, environmental enrichment, exercise and chronic treatment with antidepressants. Together, these properties of adult neurogenesis indicate that this process could be harnessed to improve hippocampal functions. However, despite a substantial number of studies demonstrating that adult-born neurons are necessary for mediating specific cognitive functions, as well as some of the behavioural effects of antidepressants, it is unknown whether an increase in adult hippocampal neurogenesis is sufficient to improve cognition and mood. Here we show that inducible genetic expansion of the population of adult-born neurons through enhancing their survival improves performance in a specific cognitive task in which two similar contexts need to be distinguished. Mice with increased adult hippocampal neurogenesis show normal object recognition, spatial learning, contextual fear conditioning and extinction learning but are more efficient in differentiating between overlapping contextual representations, which is indicative of enhanced pattern separation. Furthermore, stimulation of adult hippocampal neurogenesis, when combined with an intervention such as voluntary exercise, produces a robust increase in exploratory behaviour. However, increasing adult hippocampal neurogenesis alone does not produce a behavioural response like that induced by anxiolytic agents or antidepressants. Together, our findings suggest that strategies that are designed to increase adult hippocampal neurogenesis specifically, by targeting the cell death of adult-born neurons or by other mechanisms, may have therapeutic potential for reversing impairments in pattern separation and dentate gyrus dysfunction such as those seen during normal ageing.


Nature Neuroscience | 2012

Neurogenesis and generalization: a new approach to stratify and treat anxiety disorders

Mazen A. Kheirbek; Kristen C. Klemenhagen; Amar Sahay; René Hen

Although an influence of adult neurogenesis in mediating some of the effects of antidepressants has received considerable attention in recent years, much less is known about how alterations in this form of plasticity may contribute to psychiatric disorders such as anxiety and depression. One way to begin to address this question is to link the functions of adult-born hippocampal neurons with specific endophenotypes of these disorders. Recent studies have implicated adult-born hippocampal neurons in pattern separation, a process by which similar experiences or events are transformed into discrete, non-overlapping representations. Here we propose that impaired pattern separation underlies the overgeneralization often seen in anxiety disorders, specifically post-traumatic stress disorder and panic disorder, and therefore represents an endophenotype for these disorders. The development of new, pro-neurogenic compounds may therefore have therapeutic potential for patients who display pattern separation deficits.


Cell | 2015

Gremlin 1 Identifies a Skeletal Stem Cell with Bone, Cartilage, and Reticular Stromal Potential

Daniel L. Worthley; Michael Churchill; Jocelyn T. Compton; Yagnesh Tailor; Meenakshi Rao; Yiling Si; Daniel E. Levin; Matthew G. Schwartz; Aysu Uygur; Yoku Hayakawa; Stefanie Gross; Bernhard W. Renz; Wanda Setlik; Ashley N. Martinez; Xiaowei Chen; Saqib Nizami; Heon Goo Lee; H. Paco Kang; Jon-Michael Caldwell; Samuel Asfaha; C. Benedikt Westphalen; Trevor A. Graham; Guangchun Jin; Karan Nagar; Hongshan Wang; Mazen A. Kheirbek; Alka Kolhe; Jared Carpenter; Mark A. Glaire; Abhinav Nair

The stem cells that maintain and repair the postnatal skeleton remain undefined. One model suggests that perisinusoidal mesenchymal stem cells (MSCs) give rise to osteoblasts, chondrocytes, marrow stromal cells, and adipocytes, although the existence of these cells has not been proven through fate-mapping experiments. We demonstrate here that expression of the bone morphogenetic protein (BMP) antagonist gremlin 1 defines a population of osteochondroreticular (OCR) stem cells in the bone marrow. OCR stem cells self-renew and generate osteoblasts, chondrocytes, and reticular marrow stromal cells, but not adipocytes. OCR stem cells are concentrated within the metaphysis of long bones not in the perisinusoidal space and are needed for bone development, bone remodeling, and fracture repair. Grem1 expression also identifies intestinal reticular stem cells (iRSCs) that are cells of origin for the periepithelial intestinal mesenchymal sheath. Grem1 expression identifies distinct connective tissue stem cells in both the bone (OCR stem cells) and the intestine (iRSCs).


Science | 2013

Repeated Cortico-Striatal Stimulation Generates Persistent OCD-Like Behavior

Susanne E. Ahmari; Timothy Spellman; Neria L. Douglass; Mazen A. Kheirbek; H. Blair Simpson; Karl Deisseroth; Joshua A. Gordon; René Hen

What Causes Obsessive Compulsive Disorder? Obsessive compulsive disorder is a severe, chronic mental illness that affects millions of individuals. However, the mechanisms underlying this disease are still largely unknown (see the Perspective by Rauch and Carlezon Jr.). Ahmari et al. (p. 1234) stimulated glutamatergic pathways between the orbitofrontal cortex and the ventromedial striatum and used grooming to assess obsessive compulsive behavior in mice. Repetitive stimulation over days triggered changes in the neuronal responses of the ventromedial striatum. Over time, the behavior of the animals became independent of stimulation and could be prevented by the antidepressant fluoxetine. Burguière et al. (p. 1243) investigated the neural basis of obsessive compulsive symptoms in a mutant mouse that showed excessive expression of a conditioned form of grooming. Hyperactivation of projections from the orbitofrontal cortex to the striatum increases repetitive grooming in mice. [Also see Perspective by Rauch and Carlezon] Although cortico-striato-thalamo-cortical (CSTC) circuit dysregulation is correlated with obsessive compulsive disorder (OCD), causation cannot be tested in humans. We used optogenetics in mice to simulate CSTC hyperactivation observed in OCD patients. Whereas acute orbitofrontal cortex (OFC)–ventromedial striatum (VMS) stimulation did not produce repetitive behaviors, repeated hyperactivation over multiple days generated a progressive increase in grooming, a mouse behavior related to OCD. Increased grooming persisted for 2 weeks after stimulation cessation. The grooming increase was temporally coupled with a progressive increase in light-evoked firing of postsynaptic VMS cells. Both increased grooming and evoked firing were reversed by chronic fluoxetine, a first-line OCD treatment. Brief but repeated episodes of abnormal circuit activity may thus set the stage for the development of persistent psychopathology.


Science | 2014

Dendritic inhibition in the hippocampus supports fear learning

Matthew Lovett-Barron; Patrick Kaifosh; Mazen A. Kheirbek; Nathan B. Danielson; Jeffrey D. Zaremba; Thomas Reardon; Gergely F. Turi; René Hen; Boris V. Zemelman; Attila Losonczy

Fear, Memory, and Place Contextual fear conditioning (CFC) is widely used as a hippocampal-dependent classical conditioning task to model human episodic memory. Lovett-Barron et al. (p. 857) combined in vivo imaging with pharmacology, pharmacogenetics, and optogenetics and they found that somatostatin-expressing, dendrite-targeting γ-aminobutyric acid–releasing interneurons in hippocampal area CA1 are required for CFC. During CFC, sensory features of the aversive event reach hippocampal output neurons through excitatory cortical afferents and require active inhibitory filtering to ensure that the hippocampus exclusively encodes the conditioned stimulus. Cholinergic activation of somatostatin-positive hippocampal CA1 interneurons promotes fear-context associations. Fear memories guide adaptive behavior in contexts associated with aversive events. The hippocampus forms a neural representation of the context that predicts aversive events. Representations of context incorporate multisensory features of the environment, but must somehow exclude sensory features of the aversive event itself. We investigated this selectivity using cell type–specific imaging and inactivation in hippocampal area CA1 of behaving mice. Aversive stimuli activated CA1 dendrite-targeting interneurons via cholinergic input, leading to inhibition of pyramidal cell distal dendrites receiving aversive sensory excitation from the entorhinal cortex. Inactivating dendrite-targeting interneurons during aversive stimuli increased CA1 pyramidal cell population responses and prevented fear learning. We propose subcortical activation of dendritic inhibition as a mechanism for exclusion of aversive stimuli from hippocampal contextual representations during fear learning.


Neuron | 2014

Hippocampal Memory Traces Are Differentially Modulated by Experience, Time, and Adult Neurogenesis

Christine A. Denny; Mazen A. Kheirbek; Eva L. Alba; Kenji F. Tanaka; Rebecca A. Brachman; Kimberly B. Laughman; Nicole K. Tomm; Gergely F. Turi; Attila Losonczy; René Hen

Memory traces are believed to be ensembles of cells used to store memories. To visualize memory traces, we created a transgenic line that allows for the comparison between cells activated during encoding and expression of a memory. Mice re-exposed to a fear-inducing context froze more and had a greater percentage of reactivated cells in the dentate gyrus (DG) and CA3 than mice exposed to a novel context. Over time, these differences disappeared, in keeping with the observation that memories become generalized. Optogenetically silencing DG or CA3 cells that were recruited during encoding of a fear-inducing context prevented expression of the corresponding memory. Mice with reduced neurogenesis displayed less contextual memory and less reactivation in CA3 but, surprisingly, normal reactivation in the DG. These studies suggest that distinct memory traces are located in the DG and in CA3 but that the strength of the memory is related to reactivation in CA3.


The Journal of Neuroscience | 2012

NR2B-Dependent Plasticity of Adult-Born Granule Cells is Necessary for Context Discrimination

Mazen A. Kheirbek; Lindsay Tannenholz; René Hen

Adult-generated granule cells (GCs) in the dentate gyrus (DG) exhibit a period of heightened plasticity 4–6 weeks postmitosis. However, the functional contribution of this critical window of plasticity to hippocampal neurogenesis and behavior remains unknown. Here, we show that deletion of NR2B-containing NMDA receptors from adult-born GCs impairs a neurogenesis-dependent form of LTP in the DG and reduces dendritic complexity of adult-born GCs, but does not impact their survival. Mice in which the NR2B-containing NMDA receptor was deleted from adult-born GCs did not differ from controls in baseline anxiety-like behavior or discrimination of very different contexts, but were impaired in discrimination of highly similar contexts. These results indicate that NR2B-dependent plasticity of adult-born GCs is necessary for fine contextual discrimination and is consistent with their proposed role in pattern separation.


Annals of Neurology | 2009

Dopamine-Dependent Motor Learning Insight into Levodopa’s Long-Duration Response

Jeff A. Beeler; Zhen Fang Huang Cao; Mazen A. Kheirbek; Yunmin Ding; Jessica L. Koranda; Mari Murakami; Un Jung Kang; Xiaoxi Zhuang

Dopamine (DA) is critical for motor performance, motor learning, and corticostriatal plasticity. The relationship between motor performance and learning, and the role of DA in the mediation of them, however, remain unclear.


The Journal of Neuroscience | 2009

Adenylyl Cyclase Type 5 Contributes to Corticostriatal Plasticity and Striatum-Dependent Learning

Mazen A. Kheirbek; Jon P. Britt; Jeff A. Beeler; Yoshihiro Ishikawa; Daniel S. McGehee; Xiaoxi Zhuang

Dopamine (DA)-dependent corticostriatal plasticity is thought to underlie incremental procedural learning. A primary effector of striatal DA signaling is cAMP, yet its role in corticostriatal plasticity and striatum-dependent learning remains unclear. Here, we show that genetic deletion of a striatum-enriched isoform of adenylyl cyclase, AC5 knock-out (AC5KO), impairs two forms of striatum-dependent learning and corticostriatal synaptic plasticity. AC5KO mice were severely impaired in acquisition of a response strategy in the cross maze, a striatum-dependent task requiring a correct body turn to find a goal arm. In addition, AC5KO mice were impaired in acquisition of a motor skill, as assessed by the accelerated rotarod. Slice electrophysiology revealed a deficit in corticostriatal long-term depression (LTD) after high-frequency stimulation of tissue from AC5KO mice. LTD was rescued by activation of either presynaptic cannabinoid type 1 (CB1) receptors or postsynaptic metabotropic glutamate receptors (mGluRs), suggesting a postsynaptic role of AC5–cAMP, upstream of endocannabinoid release. In striatopallidal-projecting medium spiny neurons, DA D2 receptors are negatively coupled to cAMP production, and activation of these receptors is required for endocannabinoid release and corticostriatal LTD. Recordings from striatopallidal neurons indicated that this is mediated by AC5, because coactivation of D2 and mGluRs could induce LTD in wild-type but not in AC5KO neurons. To further examine the role of cAMP in corticostriatal plasticity, we elevated cAMP in striatal neurons of wild-type mice via the recording electrode. Under these conditions, corticostriatal LTD was eliminated. Together, these data suggest an AC5–cAMP–endocannabinoid–CB1 signaling pathway in corticostriatal plasticity and striatum-dependent learning.


Neuropsychopharmacology | 2011

Dorsal vs Ventral Hippocampal Neurogenesis: Implications for Cognition and Mood

Mazen A. Kheirbek; René Hen

An emerging view of the hippocampus is that of a functionally heterogeneous structure along its longitudinal axis. Lesion studies reveal that the dorsal (septal pole) hippocampus is involved in learning and spatial memory, whereas the ventral (temporal pole) hippocampus regulates emotional and motivated behaviors (Fanselow and Dong, 2010). Anatomical connectivity and gene expression analyses support this functional dissociation. For example, serotonergic fibers provide denser input to the ventral hippocampus with a concomitant enrichment of 5-HT1A and 2C receptors ventrally (KF Tanaka and R Hen, unpublished). Efferent connectivity indicates that ventral hippocampus can modulate reward circuitry and emotional behavior through projections to nucleus accumbens, prefrontal cortex and amygdala, and stress responses by regulating the hypothalamic–pituitary–adrenal axis (Sahay and Hen, 2007). In both regions, the subgranular zone of the dentate gyrus (DG) continues to produce new neurons in adulthood. These adult-born granule cells (GCs) functionally integrate into the DG circuit, exhibit enhanced excitability, and have a significant impact on both learning and emotional behavior (Sahay and Hen, 2007). As adult neurogenesis has been implicated in both learning and mood, an exciting possibility is that adult-born GCs in the dorsal and ventral hippocampus may be functionally dissociated.

Collaboration


Dive into the Mazen A. Kheirbek's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge