Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Md. Asiful Islam is active.

Publication


Featured researches published by Md. Asiful Islam.


Molecules | 2012

Physicochemical and Antioxidant Properties of Algerian Honey

Md. Ibrahim Khalil; Mohammed Moniruzzaman; Laïd Boukraâ; Mokhtar Benhanifia; Md. Asiful Islam; Md. Nazmul Islam; Siti Amrah Sulaiman; Siew Hua Gan

The aim of the present study was to characterize the physical, biochemical and antioxidant properties of Algerian honey samples (n = 4). Physical parameters, such as pH, moisture content, electrical conductivity (EC), total dissolved solids (TDS), color intensity, total sugar and sucrose content were measured. Several biochemical and antioxidant tests were performed to determine the antioxidant properties of the honey samples. The mean pH was 3.84 ± 0.01, and moisture the content was 13.21 ± 0.16%. The mean EC was 0.636 ± 0.001, and the mean TDS was 316.92 ± 0.92. The mean color was 120.58 ± 0.64 mm Pfund, and the mean 5-hydroxymethylfurfural (HMF) content was 21.49 mg/kg. The mean total sugar and reducing sugar contents were 67.03 ± 0.68 g/mL and 64.72 ± 0.52 g/g, respectively. The mean sucrose content was 2.29 ± 0.65%. High mean values of phenolic (459.83 ± 1.92 mg gallic acid/kg), flavonoid (54.23 ± 0.62 mg catechin/kg), ascorbic acid (159.70 ± 0.78 mg/kg), AEAC (278.15 ± 4.34 mg/kg), protein (3381.83 ± 6.19 mg/kg) and proline (2131.47 ± 0.90) contents, as well as DPPH (39.57% ± 4.18) and FRAP activities [337.77 ± 1.01 µM Fe (II)/100 g], were also detected, indicating that Algerian honey has a high antioxidant potential. Strong positive correlations were found between flavonoid, proline and ascorbic acid contents and color intensity with DPPH and FRAP values. Thus, the present study revealed that Algerian honey is a good source of antioxidants.


Journal of Applied Toxicology | 2014

Toxic compounds in honey.

Md. Nazmul Islam; Md. Ibrahim Khalil; Md. Asiful Islam; Siew Hua Gan

There is a wealth of information about the nutritional and medicinal properties of honey. However, honey may contain compounds that may lead to toxicity. A compound not naturally present in honey, named 5‐hydroxymethylfurfural (HMF), may be formed during the heating or preservation processes of honey. HMF has gained much interest, as it is commonly detected in honey samples, especially samples that have been stored for a long time. HMF is a compound that may be mutagenic, carcinogenic and cytotoxic. It has also been reported that honey can be contaminated with heavy metals such as lead, arsenic, mercury and cadmium. Honey produced from the nectar of Rhododendron ponticum contains alkaloids that can be poisonous to humans, while honey collected from Andromeda flowers contains grayanotoxins, which can cause paralysis of limbs in humans and eventually leads to death. In addition, Melicope ternata and Coriaria arborea from New Zealand produce toxic honey that can be fatal. There are reports that honey is not safe to be consumed when it is collected from Datura plants (from Mexico and Hungary), belladonna flowers and Hyoscamus niger plants (from Hungary), Serjania lethalis (from Brazil), Gelsemium sempervirens (from the American Southwest), Kalmia latifolia, Tripetalia paniculata and Ledum palustre. Although the symptoms of poisoning due to honey consumption may differ depending on the source of toxins, most common symptoms generally include dizziness, nausea, vomiting, convulsions, headache, palpitations or even death. It has been suggested that honey should not be considered a completely safe food. Copyright


Evidence-based Complementary and Alternative Medicine | 2014

Honey: A Potential Therapeutic Agent for Managing Diabetic Wounds

Fahmida Alam; Md. Asiful Islam; Siew Hua Gan; Md. Ibrahim Khalil

Diabetic wounds are unlike typical wounds in that they are slower to heal, making treatment with conventional topical medications an uphill process. Among several different alternative therapies, honey is an effective choice because it provides comparatively rapid wound healing. Although honey has been used as an alternative medicine for wound healing since ancient times, the application of honey to diabetic wounds has only recently been revived. Because honey has some unique natural features as a wound healer, it works even more effectively on diabetic wounds than on normal wounds. In addition, honey is known as an “all in one” remedy for diabetic wound healing because it can combat many microorganisms that are involved in the wound process and because it possesses antioxidant activity and controls inflammation. In this review, the potential role of honeys antibacterial activity on diabetic wound-related microorganisms and honeys clinical effectiveness in treating diabetic wounds based on the most recent studies is described. Additionally, ways in which honey can be used as a safer, faster, and effective healing agent for diabetic wounds in comparison with other synthetic medications in terms of microbial resistance and treatment costs are also described to support its traditional claims.


Comprehensive Reviews in Food Science and Food Safety | 2016

Physicochemical Properties, Minerals, Trace Elements, and Heavy Metals in Honey of Different Origins: A Comprehensive Review

Md. Solayman; Md. Asiful Islam; Sudip Paul; Yousuf Ali; Md. Ibrahim Khalil; Nadia Alam; Siew Hua Gan

Honey is a popular natural food product with a very complex composition mainly consisting of both organic and inorganic constituents. The composition of honey is strongly influenced by both natural and anthropogenic factors, which vary based on its botanical and geographical origins. Although minerals and heavy metals are minor constituents of honey, they play vital role in determining its quality. There are several different analytical methods used to determine the chemical elements in honey. These methods are typically based on spectroscopy or spectrometry techniques (including atomic absorption spectrometry, atomic emission spectrometry, inductively coupled plasma mass spectrometry, and inductively coupled plasma optical emission spectrometry). This review compiles available scientific information on minerals and heavy metals in honey reported from all over the world. To date, 54 chemical elements in various types of honey have been identified and can be divided into 3 groups: major or macroelements (Na, K, Ca, Mg, P, S, Cl), minor or trace elements (Al, Cu, Pb, Zn, Mn, Cd, Tl, Co, Ni, Rb, Ba, Be, Bi, U, V, Fe, Pt, Pd, Te, Hf, Mo, Sn, Sb, La, I, Sm, Tb, Dy, Sd, Th, Pr, Nd, Tm, Yb, Lu, Gd, Ho, Er, Ce, Cr, As, B, Br, Cd, Hg, Se, Sr), and heavy metals (trace elements that have a specific gravity at least 5 times higher than that of water and inorganic sources). Chemical elements in honey samples throughout the world vary in terms of concentrations and are also influenced by environmental pollution.


Current Pharmaceutical Design | 2016

Polyphenols: Potential Future Arsenals in the Treatment of Diabetes.

Md. Solayman; Yousuf Ali; Fahmida Alam; Md. Asiful Islam; Nadia Alam; Md. Ibrahim Khalil; Siew Hua Gan

Diabetes mellitus (DM) is one of the most common endocrine metabolic disorders. In addition to exercise and diet, oral anti-diabetic drugs have been used as a part of the management strategy worldwide. Unfortunately, none of the conventional anti-diabetic drugs are without side effects, and these drugs pose an economic burden. Therefore, the investigation of novel anti-diabetic regimens is a major challenge for researchers, in which nature has been the primary resource for the discovery of potential therapeutics. Many plants have been shown to act as anti-diabetic agents, in which the main active constituents are believed to be polyphenols. Natural products containing high polyphenol levels can control carbohydrate metabolism by various mechanisms, such as protecting and restoring beta-cell integrity, enhancing insulin releasing activity, and increasing cellular glucose uptake. Blackberries, red grapes, apricots, eggplant and popular drinks such as coffee, cocoa and green tea are all rich in polyphenols, which may dampen insulin resistance and be natural alternatives in the treatment of diabetes. Therefore, the aim of this review is to report on the available anti-diabetic polyphenols (medicinal plants, fruits and vegetables), their mechanisms in the various pathways of DM and their correlations with DM. Additionally, this review emphasizes the types of polyphenols that could be potential future resources in the treatment of DM via either novel regimens or as supplementary agents.


Oxidative Medicine and Cellular Longevity | 2016

Dietary Phytochemicals: Natural Swords Combating Inflammation and Oxidation-Mediated Degenerative Diseases.

Md. Asiful Islam; Fahmida Alam; Md. Solayman; Md. Ibrahim Khalil; Mohammad A. Kamal; Siew Hua Gan

Cumulatively, degenerative disease is one of the most fatal groups of diseases, and it contributes to the mortality and poor quality of life in the world while increasing the economic burden of the sufferers. Oxidative stress and inflammation are the major pathogenic causes of degenerative diseases such as rheumatoid arthritis (RA), diabetes mellitus (DM), and cardiovascular disease (CVD). Although a number of synthetic medications are used to treat these diseases, none of the current regimens are completely safe. Phytochemicals (polyphenols, carotenoids, anthocyanins, alkaloids, glycosides, saponins, and terpenes) from natural products such as dietary fruits, vegetables, and spices are potential sources of alternative medications to attenuate the oxidative stress and inflammation associated with degenerative diseases. Based on in vitro, in vivo, and clinical trials, some of these active compounds have shown good promise for development into novel agents for treating RA, DM, and CVD by targeting oxidative stress and inflammation. In this review, phytochemicals from natural products with the potential of ameliorating degenerative disease involving the bone, metabolism, and the heart are described.


Pain Research & Management | 2017

Trigeminal Neuralgia, Glossopharyngeal Neuralgia, and Myofascial Pain Dysfunction Syndrome: An Update

Mohammad Mizanur Rahman Khan; Shamima Easmin Nishi; Siti Nazihahasma Hassan; Md. Asiful Islam; Siew Hua Gan

Neuropathic pain is a common phenomenon that affects millions of people worldwide. Maxillofacial structures consist of various tissues that receive frequent stimulation during food digestion. The unique functions (masticatory process and facial expression) of the maxillofacial structure require the exquisite organization of both the peripheral and central nervous systems. Neuralgia is painful paroxysmal disorder of the head-neck region characterized by some commonly shared features such as the unilateral pain, transience and recurrence of attacks, and superficial and shock-like pain at a trigger point. These types of pain can be experienced after nerve injury or as a part of diseases that affect peripheral and central nerve function, or they can be psychological. Since the trigeminal and glossopharyngeal nerves innervate the oral structure, trigeminal and glossopharyngeal neuralgia are the most common syndromes following myofascial pain dysfunction syndrome. Nevertheless, misdiagnoses are common. The aim of this review is to discuss the currently available diagnostic procedures and treatment options for trigeminal neuralgia, glossopharyngeal neuralgia, and myofascial pain dysfunction syndrome.


Current Pharmaceutical Design | 2016

DNA Methylation: An Epigenetic Insight into Type 2 Diabetes Mellitus.

Fahmida Alam; Md. Asiful Islam; Siew Hua Gan; Mafauzy Mohamed; Teguh Haryo Sasongko

DNA methylation, a major regulator of epigenetic modifications has been shown to alter the expression of genes that are involved in aspects of glucose metabolism such as glucose intolerance, insulin resistance, β-cell dysfunction and other conditions, and it ultimately leads to the pathogenesis of type 2 diabetes mellitus (T2DM). Current evidences indicate an association of DNA methylation with T2DM. This review provides an overview of how various factors play crucial roles in T2DM pathogenesis and how DNA methylation interacts with these factors. Additionally, an update on current techniques of DNA methylation analysis with their pros and cons is provided as a basis for the adoption of suitable techniques in future DNA methylation research towards better management of T2DM. To elucidate the mechanistic relationship between vital environmental factors and the development of T2DM, a better understanding of the changes in gene expression associated with DNA methylation at the molecular level is still needed.


Current Topics in Medicinal Chemistry | 2017

Alzheimer's Disease and Natural Products: Future Regimens Emerging from Nature

Md. Asiful Islam; Shahad Saif Khandker; Fahmida Alam; Md. Ibrahim Khalil; Mohammad A. Kamal; Siew Hua Gan

Alzheimers disease (AD), which largely affects the elderly, has become a global burden. Patients with AD have both short- and long-term memory impairments. The neuronal loss in AD occurs due to abnormally folded amyloid beta proteins and aggregation of hyperphosphorylated tau proteins in the brain. Eventually, amyloid plaques and neurofibrillary tangles are formed, which subsequently disintegrate the neuronal transport system. There are several factors which are involved in AD pathogenesis, including oxidative stress, inflammation and the presence of metal ions. The modern therapies utilized for AD treatment have many adverse effects, driving the quest for more safe and effective medications. Many dietary components, including different types of fruits, vegetables, spices, and marine products as well as a Mediterranean diet, are a good source of antioxidants and have anti-inflammatory properties, with many showing substantial potential against AD pathogenesis. In this review, we discuss the potential of these foods for treating AD and opportunities for developing disease-targeted drugs from active compounds extracted from natural dietary products.


Autoimmunity Reviews | 2017

Comorbid association of antiphospholipid antibodies and migraine: A systematic review and meta-analysis

Md. Asiful Islam; Fahmida Alam; Kah Keng Wong

BACKGROUND Antiphospholipid antibodies (aPLs) namely anticardiolipin (aCL) antibody, anti-β2-glycoprotein I (β2GPI) antibody and lupus anticoagulant (LA) are autoantibodies produced against anionic phospholipids and proteins on plasma membranes. Migraine is a primary headache disorder which has growing evidences of autoimmune-mediated pathogenesis and previous studies suggested the presence of aPLs in migraine patients. AIMS The aim of this study was to evaluate the comorbid association between aPLs (aCL, anti-β2GPI and LA) and migraine compared to healthy controls. METHODS Studies were searched through PubMed, ISI Web of Science and Google Scholar databases without restricting the languages and year (up to October 2016) and were selected based on the inclusion criteria. Two authors independently extracted data from the included studies. All analyses were conducted by using random effects model to calculate the odds ratio (OR) and 95% confidence interval (CI). Quality assessment was carried out by using the modified Newcastle-Ottawa Scale (NOS). Publication bias was evaluated via visualization of funnel plots, Beggs and Eggers tests. RESULTS The database searches produced 1995 articles, 13 of which were selected (912 migraineurs and 822 healthy controls). 8.59%, 15.21% and 4.11% of the migraineurs exhibited aCL, anti-β2GPI and LA which was 4.83, 1.63 and 3.03 times higher, respectively, than healthy controls. A significant presence of aCL (OR: 3.55, 95% CI: 1.59-7.95; p=0.002) or anti-β2GPI antibodies (OR: 2.02, 95% CI: 1.20-3.42; p=0.008) was observed in migraine patients, however, LA was not significantly associated (OR: 2.02, 95% CI: 0.50-8.37; p=0.320). Majority of the studies (n=10 of 13) demonstrated NOS score of 7 or above and no significant publication bias was observed. CONCLUSION Migraine might be an autoimmune-associated neurologic disorder. The presence of aCL or anti-β2GPI antibodies was significant in migraine patients compared to healthy controls, suggesting an involvement of these autoantibodies in migraine attack.

Collaboration


Dive into the Md. Asiful Islam's collaboration.

Top Co-Authors

Avatar

Siew Hua Gan

Universiti Sains Malaysia

View shared research outputs
Top Co-Authors

Avatar

Fahmida Alam

Universiti Sains Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kah Keng Wong

Universiti Sains Malaysia

View shared research outputs
Top Co-Authors

Avatar

Md. Solayman

Jahangirnagar University

View shared research outputs
Top Co-Authors

Avatar

Nadia Alam

Universiti Sains Malaysia

View shared research outputs
Top Co-Authors

Avatar

E. M. Tanvir

Jahangirnagar University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge