Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Md. Aynul Bari is active.

Publication


Featured researches published by Md. Aynul Bari.


Science of The Total Environment | 2014

A wintertime investigation of atmospheric deposition of metals and polycyclic aromatic hydrocarbons in the Athabasca Oil Sands Region, Canada

Md. Aynul Bari; Warren B. Kindzierski; Sunny Cho

With planned expansion of oil sands facilities, there is interest in being able to characterize the magnitude and extent of deposition of metals and polycyclic aromatic hydrocarbons (PAH) in the Athabasca Oil Sands Region (AOSR) of Alberta. A study was undertaken using a bulk collection system to characterize wintertime atmospheric deposition of selected inorganic and organic contaminants in the AOSR. The study was carried out from January to March 2012 at two sampling sites near (within a 20 km circle of oil sands development) and two sampling sites distant (>45 km) to oil sands development. Triplicate bulk samplers were used to estimate precision of the method at one distant site. Monthly deposition samples were analyzed for 36 metals, ultra-low mercury, and 25 PAHs (including alkylated, and parent PAH). At the two sites located within 20 km of oil sands development, 3-month wintertime integrated deposition for some priority metals, alkylated and parent PAH were higher compared to distant sites. Deposition fluxes of metals and PAH were compared to other available bulk deposition studies worldwide. Median bulk measurement uncertainties of metals and both PAH classes were 26% and within ±15%, respectively suggesting that the bulk sampling method is a potential alternative for obtaining future direct measures of wintertime metals and PAH deposition at locations without access to power in the AOSR.


Environment International | 2015

Fifteen-year trends in criteria air pollutants in oil sands communities of Alberta, Canada

Md. Aynul Bari; Warren B. Kindzierski

An investigation of ambient air quality was undertaken at three communities within the Athabasca Oil Sands Region (AOSR) of Alberta, Canada (Fort McKay, Fort McMurray, and Fort Chipewyan). Daily and seasonal patterns and 15-year trends were investigated for several criteria air pollutants over the period of 1998 to 2012. A parametric trend detection method using percentiles from frequency distributions of 1h concentrations for a pollutant during each year was used. Variables representing 50th, 65th, 80th, 90th, 95th and 98th percentile concentrations each year were identified from frequency distributions and used for trend analysis. Small increasing concentration trends were observed for nitrogen dioxide (<1ppb/year) at Fort McKay and Fort McMurray over the period consistent with increasing emissions of oxides of nitrogen (ca. 1000tons/year) from industrial developments. Emissions from all oil sands facilities appear to be contributing to the trend at Fort McKay, whereas both emissions from within the community (vehicles and commercial) and oil sands facility emissions appear to be contributing to the trend at Fort McMurray. Sulfur dioxide (SO2) emissions from industrial developments in the AOSR were unchanged during the period (101,000±7000tons/year; mean±standard deviation) and no meaningful trends were judged to be occurring at all community stations. No meaningful trends occurred for ozone and fine particulate matter (PM2.5) at all community stations and carbon monoxide at one station in Fort McMurray. Air quality in Fort Chipewyan was much better and quite separate in terms of absence of factors influencing criteria air pollutant concentrations at the other community stations.


Environment International | 2016

Twelve-year trends in ambient concentrations of volatile organic compounds in a community of the Alberta Oil Sands Region, Canada.

Md. Aynul Bari; Warren B. Kindzierski; David Spink

Environmental exposure to volatile organic compounds (VOCs) in ambient air is one of a number of concerns that the First Nation Community of Fort McKay, Alberta has related to development of Canadas oil sands. An in-depth investigation of trends in ambient air VOC levels in Fort McKay was undertaken to better understand the role and possible significance of emissions from Albertas oil sands development. A non-parametric trend detection method was used to investigate trends in emissions and ambient VOC concentrations over a 12-year (2001-2012) period. Relationships between ambient VOC concentrations and production indicators of oil sands operations around Fort McKay were also examined. A weak upward trend (significant at 90% confidence level) was found for ambient concentrations of total VOCs based on sixteen detected species with an annual increase of 0.64μg/m(3) (7.2%) per year (7.7μg/m(3) increase per decade). Indicators of production (i.e., annual bitumen production and mined oil sands quantities) were correlated with ambient total VOC concentrations. Only one of 29 VOC species evaluated (1-butene) showed a statistically significant upward trend (p=0.05). Observed geometric (arithmetic) mean and maximum ambient concentrations of selected VOCs of public health concern for most recent three years of the study period (2010-2012) were below chronic and acute health risk screening criteria of the U.S. Agency for Toxic Substances and Disease Registry and U.S. Environmental Protection Agency. Thirty-two VOCs are recommended for tracking in future air quality investigations in the community to better understand whether changes are occurring over time in relation to oil sands development activities and to inform policy makers about whether or not these changes warrant additional attention.


Environmental Science & Technology | 2015

Indoor and Outdoor Levels and Sources of Submicron Particles (PM1) at Homes in Edmonton, Canada

Md. Aynul Bari; Warren B. Kindzierski; Lance Wallace; Amanda J. Wheeler; Morgan MacNeill; Marie-Eve Héroux

Exposure to submicron particles (PM1) is of interest due to their possible chronic and acute health effects. Seven consecutive 24-h PM1 samples were collected during winter and summer 2010 in a total of 74 nonsmoking homes in Edmonton, Canada. Median winter concentrations of PM1 were 2.2 μg/m(3) (interquartile range, IQR = 0.8-6.1 μg/m(3)) and 3.3 μg/m(3) (IQR = 1.5-6.9 μg/m(3)) for indoors and outdoors, respectively. In the summer, indoor (median 4.4 μg/m(3), IQR = 2.4-8.6 μg/m(3)) and outdoor (median 4.3 μg/m(3), IQR = 2.6-7.4 μg/m(3)) levels were similar. Positive matrix factorization (PMF) was applied to identify and apportion indoor and outdoor sources of elements in PM1 mass. Nine sources contributing to both indoor and outdoor PM1 concentrations were identified including secondary sulfate, soil, biomass smoke and environmental tobacco smoke (ETS), traffic, settled and mixed dust, coal combustion, road salt/road dust, and urban mixture. Three additional indoor sources were identified i.e., carpet dust, copper-rich, and silver-rich. Secondary sulfate, soil, biomass smoke and ETS contributed more than 70% (indoors: 0.29 μg/m(3), outdoors: 0.39 μg/m(3)) of measured elemental mass in PM1. These findings can aid understanding of relationships between submicron particles and health outcomes for indoor/outdoor sources.


Environment International | 2016

Evaluation of air quality indicators in Alberta, Canada - An international perspective.

Md. Aynul Bari; Warren B. Kindzierski

There has been an increase in oil sands development in northern Alberta, Canada and an overall increase in economic activity in the province in recent years. An evaluation of the state of air quality was conducted in four Alberta locations - urban centers of Calgary and Edmonton, and smaller communities of Fort McKay and Fort McMurray in the Athabasca Oil Sands Region (AOSR). Concentration trends, diurnal hourly and monthly average concentration profiles, and exceedances of provincial, national and international air quality guidelines were assessed for several criteria air pollutants over the period 1998 to 2014. Two methods were used to evaluate trends. Parametric analysis of annual median 1h concentrations and non-parametric analysis of annual geometric mean 1h concentrations showed consistent decreasing trends for NO2 and SO2 (<1ppb per year), CO (<0.1ppm per year) at all stations, decreasing for THC (<0.1ppm per year) and increasing for O3 (≤0.52ppb per year) at most stations and unchanged for PM2.5 at all stations in Edmonton and Calgary over a 17-year period. Little consistency in trends was observed among the methods for the same air pollutants other than for THC (increasing in Fort McKay <0.1ppm per year and no trend in Fort McMurray), PM2.5 in Fort McKay and Fort McMurray (no trend) and CO (decreasing <0.1ppm per year in Fort McMurray) over the same period. Levels of air quality indicators at the four locations were compared with other Canadian and international urban areas to judge the current state of air quality. Median and annual average concentrations for Alberta locations tended to be the smallest in Fort McKay and Fort McMurray. Other than for PM2.5, Calgary and Edmonton tended to have median and annual average concentrations comparable to and/or below that of larger populated Canadian and U.S. cities, depending upon the air pollutant.


Science of The Total Environment | 2017

Ambient fine particulate matter (PM2.5) in Canadian oil sands communities: Levels, sources and potential human health risk

Md. Aynul Bari; Warren B. Kindzierski

An investigation of levels and potential sources affecting ambient fine particulate matter (PM2.5) and associated risk to public health was undertaken at two Canadian oil sands communities (Fort McKay and Fort McMurray) using a 4-year dataset (2010-2013). Geometric mean concentrations of PM2.5 at Fort McKay and Fort McMurray are not considered high and were 5.47μg/m3 (interquartile range, IQR=3.02-8.55μg/m3) and 4.96μg/m3 (IQR=3.20-7.04μg/m3), respectively. Carcinogenic risks of trace elements were below acceptable (1×10-6) and/or within tolerable risk (1×10-4), and non-carcinogenic risks were below a safe level of concern (hazard index=1). Positive matrix factorization (PMF) modeling revealed five sources, where fugitive dust appeared as the major contributor to PM2.5 mass (Fort McKay: 32%, Fort McMurray: 46%) followed by secondary sulfate (31%, 42%) and secondary nitrate/biomass burning (26%, 8%). Other minor sources included a mining/mobile and a Mn-rich/Mn-Co-Zn-rich source. Source-specific risk values were also estimated and were well below acceptable and safe level of risks. Further work would be needed to better understand the contribution of secondary organic aerosols to PM2.5 formation in these oil sands communities.


Environment International | 2016

Eight-year (2007-2014) trends in ambient fine particulate matter (PM2.5) and its chemical components in the Capital Region of Alberta, Canada.

Md. Aynul Bari; Warren B. Kindzierski

Currently there have been questions about ambient fine particulate matter (PM2.5) levels in the Capital Region of Alberta, Canada. An investigation of temporal trends in PM2.5 and its chemical components was undertaken in the City of Edmonton within the Capital Region over an 8-year period (2007-2014). A non-parametric trend detection method was adopted to characterize trends in ambient concentrations. No statistically significant change was observed for ambient PM2.5 concentrations during 2007-2014, while significant decreasing trends were found for organic carbon, elemental carbon, oxalate, barium, lead and cadmium. A statistically significant increasing trend was observed for sodium chloride indicating an increase of de-icing salt contribution for winter road maintenance in recent years. Concentrations of potassium ion and zinc exhibited strong and significant seasonal variability with higher concentrations in winter than in summer likely reflecting wood smoke origins more than other potential sources in Edmonton and the surrounding region. No statistically significant changes were observed for all other chemical components examined. Notwithstanding robust population growth that has occurred in Edmonton, these findings reveal that particulate air quality and corresponding trace elements in Edmontons air has been unchanged or improved over the investigated period (2007-2014). Longer-term air quality monitoring at least over several decades is needed to establish whether trends reported here are actually occurring.


Science of The Total Environment | 2018

Ambient volatile organic compounds (VOCs) in Calgary, Alberta: Sources and screening health risk assessment

Md. Aynul Bari; Warren B. Kindzierski

Exposure to ambient volatile organic compound (VOCs) in urban areas is of interest because of their potential chronic and acute adverse effects to public health. Limited information is available about VOC sources in urban areas in Canada. An investigation of ambient VOCs levels, their potential sources and associated risks to public health was undertaken for the urban core of Albertas largest city (downtown Calgary) for the period 2010-2015. Twenty-four hour arithmetic and geometric mean concentrations of total VOCs were 42μg/m3 and 39μg/m3, respectively and ranged from 16 to 160μg/m3, with winter levels about two-fold higher than summer. Alkanes (58%) were the most dominant compounds followed by halogenated VOCs (22%) and aromatics (11%). Mean and maximum 24h ambient concentrations of selected VOCs of public health concern were below chronic and acute health risk screening criteria of the United States regulatory agencies and a cancer screening benchmark used in Alberta equivalent to 1 in 100,000 lifetime risk. The Positive matrix factorization (PMF) model revealed nine VOC sources at downtown Calgary, where oil/natural gas extraction/combustion (26%), fuel combustion (20%), traffic sources including gasoline exhaust, diesel exhaust, mixed fugitive emissions (10-15%), and industrial coatings/solvents (12%) were predominant. Other sources included dry cleaning (3.3%), biogenic (3.5%) and a background source (18%). Source-specific health risk values were also estimated. Estimated cancer risks for all sources were below the Alberta cancer screening benchmark, and estimated non-cancer risks for all sources were well below a safe level.


Environmental Management and Engineering / Unconventional Oil | 2011

LONG-TERM TEMPORAL TRENDS AND INFLUENCE OF CRITERIA POLLUTANTS ON REGIONAL AIR QUALITY IN FORT MCKAY, ALBERTA

Warren B. Kindzierski; Md. Aynul Bari

The objective of this study was to investigate temporal trends of ambient air concentrations with changes in emissions from community and industrial developments in order to get a better understanding of how these development activities actually influence regional air quality. From 1998 to 2010, daily and seasonal patterns of criteria air pollutants were monitored at a community (Fort McKay) within the Athabasca Oil Sands Region of Alberta. A parametric trend detection method using percentiles from frequency distributions of 1 h concentrations for a pollutant during each year was used. Response variables representing 50 th , 65 th , 80 th , 90 th , 95 th , and 98 th percentile concentrations for each year were identified from frequency distributions and used for trend analysis. Small but consistently increasing hourly concentrations were observed for oxides of nitrogen. There was no indication of any change for ozone; a slight decrease for sulphur dioxide at lower percentile concentrations, and a decreasing trend for fine particulate matter (PM2.5) were evident. However, on average, the Fort McKay station experienced about 1 exceedence of the 24 h air quality objective for PM2.5 annually, similar to other community monitoring stations in the region.


Environmental Pollution | 2018

Ambient volatile organic compounds (VOCs) in communities of the Athabasca oil sands region: Sources and screening health risk assessment

Md. Aynul Bari; Warren B. Kindzierski

An investigation of ambient levels and sources of volatile organic compounds (VOCs) and associated public health risks was carried out at two northern Alberta oil sands communities (Fort McKay and Fort McMurray located < 25 km and >30 km from oil sands development, respectively) for the period January 2010-March 2015. Levels of total detected VOCs were comparatively similar at both communities (Fort McKay: geometric mean = 22.8 μg/m3, interquartile range, IQR = 13.8-41 μg/m3); (Fort McMurray: geometric mean = 23.3 μg/m3, IQR = 12.0-41 μg/m3). In general, methanol (24%-50%), alkanes (26%-32%) and acetaldehyde (23%-30%) were the predominant VOCs followed by acetone (20%-24%) and aromatics (∼9%). Mean and maximum ambient concentrations of selected hazardous VOCs were compared to health risk screening criteria used by United States regulatory agencies. The Positive matrix factorization (PMF) model was used to identify and apportion VOC sources at Fort McKay and Fort McMurray. Five sources were identified at Fort McKay, where four sources (oil sands fugitives, liquid/unburned fuel, ethylbenzene/xylene-rich and petroleum processing) were oil sands related emissions and contributed to 70% of total VOCs. At Fort McMurray six sources were identified, where local sources other than oil sands development were also observed. Contribution of aged air mass/regional transport including biomass burning emissions was ∼30% of total VOCs at both communities. Source-specific carcinogenic and non-carcinogenic risk values were also calculated and were below acceptable and safe levels of risk, except for aged air mass/regional transport (at both communities), and ethylbenzene/xylene-rich (only at Fort McMurray).

Collaboration


Dive into the Md. Aynul Bari's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lance Wallace

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge