Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Md. Emdadul Haque is active.

Publication


Featured researches published by Md. Emdadul Haque.


Biochimica et Biophysica Acta | 2012

Interaction of α-synuclein with vesicles that mimic mitochondrial membranes.

Imola G. Zigoneanu; Yoo Jeong Yang; Alexander S. Krois; Md. Emdadul Haque; Gary J. Pielak

α-Synuclein, an intrinsically-disordered protein associated with Parkinsons disease, interacts with mitochondria, but the details of this interaction are unknown. We probed the interaction of α-synuclein and its A30P variant with lipid vesicles by using fluorescence anisotropy and (19)F nuclear magnetic resonance. Both proteins interact strongly with large unilamellar vesicles whose composition is similar to that of the inner mitochondrial membrane, which contains cardiolipin. However, the proteins have no affinity for vesicles mimicking the outer mitochondrial membrane, which lacks cardiolipin. The (19)F data show that the interaction involves α-synucleins N-terminal region. These data indicate that the middle of the N-terminal region, which contains the KAKEGVVAAAE repeats, is involved in binding, probably via electrostatic interactions between the lysines and cardiolipin. We also found that the strength of α-synuclein binding depends on the nature of the cardiolipin acyl side chains. Eliminating one double bond increases affinity, while complete saturation dramatically decreases affinity. Increasing the temperature increases the binding of wild-type, but not the A30P variant. The data are interpreted in terms of the properties of the protein, cardiolipin demixing within the vesicles upon binding of α-synuclein, and packing density. The results advance our understanding of α-synucleins interaction with mitochondrial membranes.


Mitochondrion | 2008

The effect of mutated mitochondrial ribosomal proteins S16 and S22 on the assembly of the small and large ribosomal subunits in human mitochondria

Md. Emdadul Haque; Domenick Grasso; Chaya Miller; Linda L. Spremulli; Ann Saada

Mutations in mitochondrial small subunit ribosomal proteins MRPS16 or MRPS22 cause severe, fatal respiratory chain dysfunction due to impaired translation of mitochondrial mRNAs. The loss of either MRPS16 or MRPS22 was accompanied by the loss of most of another small subunit protein MRPS11. However, MRPS2 was reduced only about 2-fold in patient fibroblasts. This observation suggests that the small ribosomal subunit is only partially able to assemble in these patients. Two large subunit ribosomal proteins, MRPL13 and MRPL15, were present in substantial amounts suggesting that the large ribosomal subunit is still present despite a non-functional small subunit.


Journal of Biological Chemistry | 2010

Properties of the C-terminal Tail of Human Mitochondrial Inner Membrane Protein Oxa1L and Its Interactions with Mammalian Mitochondrial Ribosomes

Md. Emdadul Haque; Kevin Elmore; Ashutosh Tripathy; Hasan Koc; Emine C. Koc; Linda L. Spremulli

In humans the mitochondrial inner membrane protein Oxa1L is involved in the biogenesis of membrane proteins and facilitates the insertion of both mitochondrial- and nuclear-encoded proteins from the mitochondrial matrix into the inner membrane. The C-terminal ∼100-amino acid tail of Oxa1L (Oxa1L-CTT) binds to mitochondrial ribosomes and plays a role in the co-translational insertion of mitochondria-synthesized proteins into the inner membrane. Contrary to suggestions made for yeast Oxa1p, our results indicate that the C-terminal tail of human Oxa1L does not form a coiled-coil helical structure in solution. The Oxa1L-CTT exists primarily as a monomer in solution but forms dimers and tetramers at high salt concentrations. The binding of Oxa1L-CTT to mitochondrial ribosomes is an enthalpy-driven process with a Kd of 0.3–0.8 μm and a stoichiometry of 2. Oxa1L-CTT cross-links to mammalian mitochondrial homologs of the bacterial ribosomal proteins L13, L20, and L28 and to mammalian mitochondrial specific ribosomal proteins MRPL48, MRPL49, and MRPL51. Oxa1L-CTT does not cross-link to proteins decorating the conventional exit tunnel of the bacterial large ribosomal subunit (L22, L23, L24, and L29).


Journal of Biological Chemistry | 2010

Identification of protein-protein and protein-ribosome interacting regions of the C-terminal tail of human mitochondrial inner membrane protein Oxa1L

Md. Emdadul Haque; Linda L. Spremulli; Christopher J. Fecko

The mammalian mitochondrial inner membrane protein Oxa1L is involved in the insertion of a number of mitochondrial translation products into the inner membrane. During this process, the C-terminal tail of Oxa1L (Oxa1L-CTT) binds mitochondrial ribosomes and is believed to coordinate the synthesis and membrane insertion of the nascent chains into the membrane. The C-terminal tail of Oxa1L does not contain any Cys residues. Four variants of this protein with a specifically placed Cys residue at position 4, 39, 67, or 94 of Oxa1L-CTT have been prepared. These Cys residues have been derivatized with a fluorescent probe, tetramethylrhodamine-5-maleimide, for biophysical studies. Oxa1L-CTT forms oligomers cooperatively with a binding constant in the submicromolar range. Fluorescence anisotropy and fluorescence lifetime measurements indicate that contacts near a long helix close to position 39 of Oxa1L-CTT occur during oligomer formation. Fluorescence correlation spectroscopy measurements demonstrate that all of the Oxa1L-CTT derivatives bind to mammalian mitochondrial ribosomes. Steady-state fluorescence quenching and fluorescence lifetime data indicate that there are extensive contacts between Oxa1L-CTT and the ribosome-encompassing regions around positions 39, 67, and 94. The results of this study suggest that Oxa1L-CTT undergoes conformational changes and induced oligomer formation when it binds to the ribosome.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Insertion domain within mammalian mitochondrial translation initiation factor 2 serves the role of eubacterial initiation factor 1

Aymen S. Yassin; Md. Emdadul Haque; Partha P. Datta; Kevin Elmore; Nilesh K. Banavali; Linda L. Spremulli; Rajendra K. Agrawal

Mitochondria have their own translational machineries for the synthesis of thirteen polypeptide chains that are components of the complexes that participate in the process of oxidative phosphorylation (or ATP generation). Translation initiation in mammalian mitochondria requires two initiation factors, IF2mt and IF3mt, instead of the three that are present in eubacteria. The mammalian IF2mt possesses a unique 37 amino acid insertion domain, which is known to be important for the formation of the translation initiation complex. We have obtained a three-dimensional cryoelectron microscopic map of the mammalian IF2mt in complex with initiator and the eubacterial ribosome. We find that the 37 amino acid insertion domain interacts with the same binding site on the ribosome that would be occupied by the eubacterial initiation factor IF1, which is absent in mitochondria. Our finding suggests that the insertion domain of IF2mt mimics the function of eubacterial IF1, by blocking the ribosomal aminoacyl-tRNA binding site (A site) at the initiation step.


Nucleic Acids Research | 2008

The interaction of mammalian mitochondrial translational initiation factor 3 with ribosomes: evolution of terminal extensions in IF3mt

Md. Emdadul Haque; Domenick Grasso; Linda L. Spremulli

Mammalian mitochondrial initiation factor 3 (IF3mt) has a central region with homology to bacterial IF3. This homology region is preceded by an N-terminal extension and followed by a C-terminal extension. The role of these extensions on the binding of IF3mt to mitochondrial small ribosomal subunits (28S) was studied using derivatives in which the extensions had been deleted. The Kd for the binding of IF3mt to 28S subunits is ∼30 nM. Removal of either the N- or C-terminal extension has almost no effect on this value. IF3mt has very weak interactions with the large subunit of the mitochondrial ribosome (39S) (Kd = 1.5 μM). However, deletion of the extensions results in derivatives with significant affinity for 39S subunits (Kd = 0.12−0.25 μM). IF3mt does not bind 55S monosomes, while the deletion derivative binds slightly to these particles. IF3mt is very effective in dissociating 55S ribosomes. Removal of the N-terminal extension has little effect on this activity. However, removal of the C-terminal extension leads to a complex dissociation pattern due to the high affinity of this derivative for 39S subunits. These data suggest that the extensions have evolved to ensure the proper dissociation of IF3mt from the 28S subunits upon 39S subunit joining.


Biophysical Journal | 2011

Hemagglutinin Fusion Peptide Mutants in Model Membranes: Structural Properties, Membrane Physical Properties, and PEG-Mediated Fusion

Md. Emdadul Haque; Hirak Chakraborty; Tilen Koklic; Hiroaki Komatsu; Paul H. Axelsen; Barry R. Lentz

While the importance of viral fusion peptides (e.g., hemagglutinin (HA) and gp41) in virus-cell membrane fusion is established, it is unclear how these peptides enhance membrane fusion, especially at low peptide/lipid ratios for which the peptides are not lytic. We assayed wild-type HA fusion peptide and two mutants, G1E and G13L, for their effects on the bilayer structure of 1,2-dioleoyl-3-sn-phosphatidylcholine/1,2-dioleoyl-3-sn-phosphatidylethanolamine/Sphingomyelin/Cholesterol (35:30:15:20) membranes, their structures in the lipid bilayer, and their effects on membrane fusion. All peptides bound to highly curved vesicles, but fusion was triggered only in the presence of poly(ethylene glycol). At low (1:200) peptide/lipid ratios, wild-type peptide enhanced remarkably the extent of content mixing and leakage along with the rate constants for these processes, and significantly enhanced the bilayer interior packing and filled the membrane free volume. The mutants caused no change in contents mixing or interior packing. Circular dichroism, polarized-attenuated total-internal-reflection Fourier-transform infrared spectroscopy measurements, and membrane perturbation measurements all conform to the inverted-V model for the structure of wild-type HA peptide. Similar measurements suggest that the G13L mutant adopts a less helical conformation in which the N-terminus moves closer to the bilayer interface, thus disrupting the V-structure. The G1E peptide barely perturbs the bilayer and may locate slightly above the interface. Fusion measurements suggest that the wild-type peptide promotes conversion of the stalk to an expanded trans-membrane contact intermediate through its ability to occupy hydrophobic space in a trans-membrane contact structure. While wild-type peptide increases the rate of initial intermediate and final pore formation, our results do not speak to the mechanisms for these effects, but they do leave open the possibility that it stabilizes the transition states for these events.


Biochimica et Biophysica Acta | 2011

Contacts between mammalian mitochondrial translational initiation factor 3 and ribosomal proteins in the small subunit

Md. Emdadul Haque; Hasan Koc; Huseyin Cimen; Emine C. Koc; Linda L. Spremulli

Mammalian mitochondrial translational initiation factor 3 (IF3(mt)) binds to the small subunit of the ribosome displacing the large subunit during the initiation of protein biosynthesis. About half of the proteins in mitochondrial ribosomes have homologs in bacteria while the remainder are unique to the mitochondrion. To obtain information on the ribosomal proteins located near the IF3(mt) binding site, cross-linking studies were carried out followed by identification of the cross-linked proteins by mass spectrometry. IF3(mt) cross-links to mammalian mitochondrial homologs of the bacterial ribosomal proteins S5, S9, S10, and S18-2 and to unique mitochondrial ribosomal proteins MRPS29, MRPS32, MRPS36 and PTCD3 (Pet309) which has now been identified as a small subunit ribosomal protein. IF3(mt) has extensions on both the N- and C-termini compared to the bacterial factors. Cross-linking of a truncated derivative lacking these extensions gives the same hits as the full length IF3(mt) except that no cross-links were observed to MRPS36. IF3 consists of two domains separated by a flexible linker. Cross-linking of the isolated N- and C-domains was observed to a range of ribosomal proteins particularly with the C-domain carrying the linker which showed significant cross-linking to several ribosomal proteins not found in prokaryotes.


Journal of Molecular Biology | 2008

Roles of the N- and C-terminal domains of mammalian mitochondrial initiation factor 3 in protein biosynthesis.

Md. Emdadul Haque; Linda L. Spremulli

Bacterial initiation factor 3 (IF3) is organized into N- and C-domains separated by a linker. Mitochondrial IF3 (IF3(mt)) has a similar domain organization, although both domains have extensions not found in the bacterial factors. Constructs of the N- and C-domains of IF3(mt) with and without the connecting linker were prepared. The K(d) values for the binding of full-length IF3(mt) and its C-domain with and without the linker to mitochondrial 28S subunits are 30, 60, and 95 nM, respectively, indicating that much of the ribosome binding interactions are mediated by the C-domain. However, the N-domain binds to 28S subunits with only a 10-fold lower affinity than full-length IF3(mt). This observation indicates that the N-domain of IF3(mt) has significant contacts with the protein-rich small subunit of mammalian mitochondrial ribosomes. The linker also plays a role in modulating the interactions between the 28S subunit and the factor; it is not just a physical connector between the two domains. The presence of the two domains and the linker may optimize the overall affinity of IF3(mt) for the ribosome. These results are in sharp contrast to observations with Escherichia coli IF3. Removal of the N-domain drastically reduces the activity of IF3(mt) in the dissociation of mitochondrial 55S ribosomes, although the C-domain itself retains some activity. This residual activity depends significantly on the linker region. The N-domain alone has no effect on the dissociation of ribosomes. Full-length IF3(mt) reduces the binding of fMet-tRNA to the 28S subunit in the absence of mRNA. Both the C-terminal extension and the linker are required for this effect. IF3(mt) promotes the formation of a binary complex between IF2(mt) and fMet-tRNA that may play an important role in mitochondrial protein synthesis. Both domains play a role promoting the formation of this complex.


Biochemical and Biophysical Research Communications | 2010

The effect of spermine on the initiation of mitochondrial protein synthesis.

Brooke E. Christian; Md. Emdadul Haque; Linda L. Spremulli

Polyamines are important in both prokaryotic and eukaryotic translational systems. Spermine is a quaternary aliphatic amine that is cationic under physiological conditions. In this paper, we demonstrate that spermine stimulates fMet-tRNA binding to mammalian mitochondrial 55S ribosomes. The stimulatory effect of spermine is independent of the identity of the mRNA. The degree of stimulation of spermine is the same at all concentrations of mitochondrial initiation factor 2 (IF2(mt)) and mitochondrial initiation factor 3 (IF3(mt)). This observation indicates that IF2(mt) and IF3(mt), while essential for initiation, are not the primary components of the translation initiation system affected by spermine. IF3(mt) dissociates 55S ribosomes detectably in the absence of spermine, but this effect is strongly inhibited in the presence of spermine. This observation indicates that the positive effect of spermine on initiation is not due to an increase in the availability of the small subunits for initiation. Spermine also promotes fMet-tRNA binding to small subunits of the mitochondrial ribosome in the presence of IF2(mt). The major effect of spermine in promoting initiation complex formation thus appears to be on the interaction of fMet-tRNA with the ribosome.

Collaboration


Dive into the Md. Emdadul Haque's collaboration.

Top Co-Authors

Avatar

Linda L. Spremulli

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Barry R. Lentz

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Domenick Grasso

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Emine C. Koc

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin Elmore

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Paul H. Axelsen

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Alexander S. Krois

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Andrea J. McCoy

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Ashutosh Tripathy

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge