Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mechthild Tegeder is active.

Publication


Featured researches published by Mechthild Tegeder.


Trends in Plant Science | 1998

Amino acid transport in plants

Wolf-Nicolas Fischer; Bruno André; Doris Rentsch; Sylvia Krolkiewicz; Mechthild Tegeder; Kevin E. Breitkreuz; Wolf B. Frommer

Amino acids are transported between different organs through both xylem and phloem. This redistribution of nitrogen and carbon requires the activity of amino acid transporters in the plasma membrane. In addition, amino acids can be taken up directly by the roots. Amino acid transport has been well characterized in the yeast Saccharomyces cerevisiae, and functional complementation has served as an excellent tool for identifying and characterizing amino acid transporters from plants. The transporters from yeast and plants are related and can be grouped into two large superfamilies. Based on substrate specificity and affinity, as well as expression patterns in plants, different functions have been assigned to some of the individual transporters. Plant mutants for amino acid transporter genes are now being used to study the physiological functions of many of the cloned genes.


FEBS Letters | 2007

Transporters for uptake and allocation of organic nitrogen compounds in plants

Doris Rentsch; Susanne Schmidt; Mechthild Tegeder

Nitrogen is an essential macronutrient for plant growth. Following uptake from the soil or assimilation within the plant, organic nitrogen compounds are transported between organelles, from cell to cell and over long distances in support of plant metabolism and development. These translocation processes require the function of integral membrane transporters. The review summarizes our current understanding of the molecular mechanisms of organic nitrogen transport processes, with a focus on amino acid, ureide and peptide transporters.


Trends in Biochemical Sciences | 2002

Conservation of amino acid transporters in fungi, plants and animals.

Daniel Wipf; Uwe Ludewig; Mechthild Tegeder; Doris Rentsch; Wolfgang Koch; Wolf B. Frommer

When comparing the transporters of three completely sequenced eukaryotic genomes--Saccharomyces cerevisiae, Arabidopsis thaliana and Homo sapiens--transporter types can be distinguished according to phylogeny, substrate spectrum, transport mechanism and cell specificity. The known amino acid transporters belong to five different superfamilies. Two preferentially Na(+)-coupled transporter superfamilies are not represented in the yeast and Arabidopsis genomes, whereas the other three groups, which often function as H(+)-coupled systems, have members in all investigated genomes. Additional superfamilies exist for organellar transport, including mitochondrial and plastidic carriers. When used in combination with phylogenetic analyses, functional comparison might aid our prediction of physiological functions for related but uncharacterized open reading frames.


Molecular Plant | 2010

Uptake and Partitioning of Amino Acids and Peptides

Mechthild Tegeder; Doris Rentsch

Plant growth, productivity, and seed yield depend on the efficient uptake, metabolism, and allocation of nutrients. Nitrogen is an essential macronutrient needed in high amounts. Plants have evolved efficient and selective transport systems for nitrogen uptake and transport within the plant to sustain development, growth, and finally reproduction. This review summarizes current knowledge on membrane proteins involved in transport of amino acids and peptides. A special emphasis was put on their function in planta. We focus on uptake of the organic nitrogen by the root, source-sink partitioning, and import into floral tissues and seeds.


Plant Physiology | 2008

AtPTR1 and AtPTR5 Transport Dipeptides in Planta

Nataliya Y. Komarova; Kathrin Thor; Adrian Gubler; Stefan Meier; Daniela Dietrich; Annett Weichert; Marianne Suter Grotemeyer; Mechthild Tegeder; Doris Rentsch

Transporters for di- and tripeptides belong to the large and poorly characterized PTR/NRT1 (peptide transporter/nitrate transporter 1) family. A new member of this gene family, AtPTR5, was isolated from Arabidopsis (Arabidopsis thaliana). Expression of AtPTR5 was analyzed and compared with tissue specificity of the closely related AtPTR1 to discern their roles in planta. Both transporters facilitate transport of dipeptides with high affinity and are localized at the plasma membrane. Mutants, double mutants, and overexpressing lines were exposed to several dipeptides, including toxic peptides, to analyze how the modified transporter expression affects pollen germination, growth of pollen tubes, root, and shoot. Analysis of atptr5 mutants and AtPTR5-overexpressing lines showed that AtPTR5 facilitates peptide transport into germinating pollen and possibly into maturating pollen, ovules, and seeds. In contrast, AtPTR1 plays a role in uptake of peptides by roots indicated by reduced nitrogen (N) levels and reduced growth of atptr1 mutants on medium with dipeptides as the sole N source. Furthermore, overexpression of AtPTR5 resulted in enhanced shoot growth and increased N content. The function in peptide uptake was further confirmed with toxic peptides, which inhibited growth. The results show that closely related members of the PTR/NRT1 family have different functions in planta. This study also provides evidence that the use of organic N is not restricted to amino acids, but that dipeptides should be considered as a N source and transport form in plants.


Current Opinion in Plant Biology | 2012

Transporters for amino acids in plant cells: some functions and many unknowns.

Mechthild Tegeder

Membrane proteins are essential to move amino acids in or out of plant cells as well as between organelles. While many putative amino acid transporters have been identified, function in nitrogen movement in plants has only been shown for a few proteins. Those studies demonstrate that import systems are fundamental in partitioning of amino acids at cellular and whole plant level. Physiological data further suggest that amino acid transporters are key-regulators in plant metabolism and that their activities affect growth and development. By contrast, knowledge on the molecular mechanisms of cellular export processes as well as on intracellular transport of amino acids is scarce. Similarly, little is known about the regulation of amino acid transporter function and involvement of the transporters in amino acid signaling. Future studies need to identify the missing components to elucidate the importance of amino acid transport processes for whole plant physiology and productivity.


Protoplasma | 1997

Cell specific expression of three genes involved in plasma membrane sucrose transport in developingVicia faba seed

Gregory N. Harrington; Vincent R. Franceschi; Christina E. Offler; John W. Patrick; Mechthild Tegeder; Wolf B. Frommer; J. F. Harper; W. D. Hitz

SummaryIn developing seeds ofVicia faba, transfer cells line the inner surface of the seed coat and the juxtaposed epidermal surface of the cotyledons. Circumstantial evidence, derived from anatomical and physiological studies, indicates that these cells are the likely sites of sucrose efflux to, and influx from, the seed apoplasm, respectively. In this study, expression of an H+/sucrose symporter-gene was found to be localised to the epidermal-transfer cell complexes of the cotyledons. The sucrose binding protein (SBP) gene was expressed in these cells as well as in the thin-walled parenchyma transfer cells of the seed coat. SBP was immunolocalised exclusively to the plasma membranes located in the wall ingrowth regions of the transfer cells. In addition, a plasma membrane H+-ATPase was most abundant in the wall ingrowth regions with decreasing levels of expression at increasing distance from the transfer cell layers. The observed co-localisation of high densities of a plasma membrane H+-ATPase and sucrose transport proteins to the wall ingrowths of the seed coat and cotyledon transfer cells provides strong evidence that these regions are the principal sites of facilitated membrane transport of sucrose to and from the seed apoplasm.


Plant Journal | 2009

AAP1 regulates import of amino acids into developing Arabidopsis embryos

Ann Sanders; Ray Collier; Alexander Trethewy; Grant Gould; Renate Sieker; Mechthild Tegeder

The embryo of Arabidopsis seeds is symplasmically isolated from the surrounding seed coat and endosperm, and uptake of nutrients from the seed apoplast is required for embryo growth and storage reserve accumulation. With the aim of understanding the importance of nitrogen (N) uptake into developing embryos, we analysed two mutants of AAP1 (At1g58360), an amino acid transporter that was localized to Arabidopsis embryos. In mature and desiccated aap1 seeds the total N and carbon content was reduced while the total free amino acid levels were strongly increased. Separately analysed embryos and seed coats/endosperm of mature seeds showed that the elevated amounts in amino acids were caused by an accumulation in the seed coat/endosperm, demonstrating that a decrease in uptake of amino acids by the aap1 embryo affects the N pool in the seed coat/endosperm. Also, the number of protein bodies was increased in the aap1 endosperm, suggesting that the accumulation of free amino acids triggered protein synthesis. Analysis of seed storage compounds revealed that the total fatty acid content was unchanged in aap1 seeds, but storage protein levels were decreased. Expression analysis of genes of seed N transport, metabolism and storage was in agreement with the biochemical data. In addition, seed weight, as well as total silique and seed number, was reduced in the mutants. Together, these results demonstrate that seed protein synthesis and seed weight is dependent on N availability and that AAP1-mediated uptake of amino acids by the embryo is important for storage protein synthesis and seed yield.


Journal of Experimental Botany | 2014

Transporters involved in source to sink partitioning of amino acids and ureides: opportunities for crop improvement

Mechthild Tegeder

In most plant species, amino acids are the predominant chemical forms in which nitrogen is transported. However, in nodulated tropical or subtropical legumes, ureides are the main nitrogen transport compounds. This review describes the partitioning of amino acids and ureides within the plant, and follows their movement from the location of synthesis (source) to the sites of usage (sink). Xylem and phloem connect source and sink organs and serve as routes for long-distance transport of the organic nitrogen. Loading and unloading of these transport pathways might require movement of amino acids and ureides across cell membranes, a task that is mediated by membrane proteins (i.e. transporters) functioning as export or import systems. The current knowledge on amino acid and ureide transporters involved in long-distance transport of nitrogen is provided and their importance for source and sink physiology discussed. The review concludes by exploring possibilities for genetic manipulation of organic nitrogen transporter activities to confer increases in crop productivity.


The Plant Cell | 2010

Altered Xylem-Phloem Transfer of Amino Acids Affects Metabolism and Leads to Increased Seed Yield and Oil Content in Arabidopsis

Lizhi Zhang; Qiumin Tan; Raymond W. Lee; Alexander Trethewy; Yong-Hwa Lee; Mechthild Tegeder

This work examines the amino acid transporter AAP2, which localizes to the phloem throughout the plant and is key for amino acid transfer from the xylem-phloem; mutants in AAP2 perturb nitrogen-carbon balance in the seed, affect leaf metabolism and development, and increase seed yield and oil content. Seed development and nitrogen (N) storage depend on delivery of amino acids to seed sinks. For efficient translocation to seeds, amino acids are loaded into the phloem in source leaves and along the long distance transport pathway through xylem-phloem transfer. We demonstrate that Arabidopsis thaliana AMINO ACID PERMEASE2 (AAP2) localizes to the phloem throughout the plant. AAP2 T-DNA insertion lines showed changes in source-sink translocation of amino acids and a decrease in the amount of seed total N and storage proteins, supporting AAP2 function in phloem loading and amino acid distribution to the embryo. Interestingly, in aap2 seeds, total carbon (C) levels were unchanged, while fatty acid levels were elevated. Moreover, branch and silique numbers per plant and seed yield were strongly increased. This suggests changes in N and C delivery to sinks and subsequent modulations of sink development and seed metabolism. This is supported by tracer experiments, expression studies of genes of N/C transport and metabolism in source and sink, and by phenotypic and metabolite analyses of aap2 plants. Thus, AAP2 is key for xylem to phloem transfer and sink N and C supply; moreover, modifications of N allocation can positively affect C assimilation and source-sink transport and benefit sink development and oil yield.

Collaboration


Dive into the Mechthild Tegeder's collaboration.

Top Co-Authors

Avatar

Wolf B. Frommer

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John M. Ward

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Qiumin Tan

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yong-Hwa Lee

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Molly Perchlik

Washington State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge