Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Medha M. Pathak is active.

Publication


Featured researches published by Medha M. Pathak.


Neuron | 2005

Voltage-Sensing Arginines in a Potassium Channel Permeate and Occlude Cation-Selective Pores

Francesco Tombola; Medha M. Pathak; Ehud Y. Isacoff

Voltage-gated ion channels sense voltage by shuttling arginine residues located in the S4 segment across the membrane electric field. The molecular pathway for this arginine permeation is not understood, nor is the filtering mechanism that permits passage of charged arginines but excludes solution ions. We find that substituting the first S4 arginine with smaller amino acids opens a high-conductance pathway for solution cations in the Shaker K(+) channel at rest. The cationic current does not flow through the central K(+) pore and is influenced by mutation of a conserved residue in S2, suggesting that it flows through a protein pathway within the voltage-sensing domain. The current can be carried by guanidinium ions, suggesting that this is the pathway for transmembrane arginine permeation. We propose that when S4 moves it ratchets between conformations in which one arginine after another occupies and occludes to ions the narrowest part of this pathway.


The Journal of General Physiology | 2004

The Cooperative Voltage Sensor Motion that Gates a Potassium Channel

Medha M. Pathak; Lisa Kurtz; Francesco Tombola; Ehud Y. Isacoff

The four arginine-rich S4 helices of a voltage-gated channel move outward through the membrane in response to depolarization, opening and closing gates to generate a transient ionic current. Coupling of voltage sensing to gating was originally thought to operate with the S4s moving independently from an inward/resting to an outward/activated conformation, so that when all four S4s are activated, the gates are driven to open or closed. However, S4 has also been found to influence the cooperative opening step (Smith-Maxwell et al., 1998a), suggesting a more complex mechanism of coupling. Using fluorescence to monitor structural rearrangements in a Shaker channel mutant, the ILT channel (Ledwell and Aldrich, 1999), that energetically isolates the steps of activation from the cooperative opening step, we find that opening is accompanied by a previously unknown and cooperative movement of S4. This gating motion of S4 appears to be coupled to the internal S6 gate and to two forms of slow inactivation. Our results suggest that S4 plays a direct role in gating. While large transmembrane rearrangements of S4 may be required to unlock the gating machinery, as proposed before, it appears to be the gating motion of S4 that drives the gates to open and close.


Nature | 2007

The twisted ion-permeation pathway of a resting voltage-sensing domain.

Francesco Tombola; Medha M. Pathak; Pau Gorostiza; Ehud Y. Isacoff

Proteins containing voltage-sensing domains (VSDs) translate changes in membrane potential into changes in ion permeability or enzymatic activity. In channels, voltage change triggers a switch in conformation of the VSD, which drives gating in a separate pore domain, or, in channels lacking a pore domain, directly gates an ion pathway within the VSD. Neither mechanism is well understood. In the Shaker potassium channel, mutation of the first arginine residue of the S4 helix to a smaller uncharged residue makes the VSD permeable to ions (‘omega current’) in the resting conformation (‘S4 down’). Here we perform a structure-guided perturbation analysis of the omega conductance to map its VSD permeation pathway. We find that there are four omega pores per channel, which is consistent with one conduction path per VSD. Permeating ions from the extracellular medium enter the VSD at its peripheral junction with the pore domain, and then plunge into the core of the VSD in a curved conduction pathway. Our results provide a model of the resting conformation of the VSD.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Stretch-activated ion channel Piezo1 directs lineage choice in human neural stem cells

Medha M. Pathak; Jamison L. Nourse; Truc Tran; Jennifer Hwe; Janahan Arulmoli; Dai Trang T. Le; Elena Bernardis; Lisa A. Flanagan; Francesco Tombola

Significance Stem cells make lineage-choice decisions based on a combination of internal and external signals, including mechanical cues from the surrounding environment. Here we show that Piezo1, an ion channel opened by membrane tension, plays an important role in transducing matrix mechanical information to intracellular pathways affecting differentiation in neural stem cells. Piezo1 activity influences whether neural stem cells differentiate along a neuronal or astrocytic lineage. One of the barriers to successful neural stem cell transplantation therapy for neurological disorders lies in directing the fate of transplanted cells. Pharmacological agents aimed at modulating Piezo1 activity may be useful in directing the fate of transplanted neural stem cells toward the desired lineage. Neural stem cells are multipotent cells with the ability to differentiate into neurons, astrocytes, and oligodendrocytes. Lineage specification is strongly sensitive to the mechanical properties of the cellular environment. However, molecular pathways transducing matrix mechanical cues to intracellular signaling pathways linked to lineage specification remain unclear. We found that the mechanically gated ion channel Piezo1 is expressed by brain-derived human neural stem/progenitor cells and is responsible for a mechanically induced ionic current. Piezo1 activity triggered by traction forces elicited influx of Ca2+, a known modulator of differentiation, in a substrate-stiffness–dependent manner. Inhibition of channel activity by the pharmacological inhibitor GsMTx-4 or by siRNA-mediated Piezo1 knockdown suppressed neurogenesis and enhanced astrogenesis. Piezo1 knockdown also reduced the nuclear localization of the mechanoreactive transcriptional coactivator Yes-associated protein. We propose that the mechanically gated ion channel Piezo1 is an important determinant of mechanosensitive lineage choice in neural stem cells and may play similar roles in other multipotent stem cells.


Neuron | 2005

How Far Will You Go to Sense Voltage

Francesco Tombola; Medha M. Pathak; Ehud Y. Isacoff

Despite tremendous progress in the study of voltage-gated channels, the molecular mechanism underlying voltage sensing has remained a matter of debate. We review five new studies that make major progress in the field. The studies employ a battery of distinct approaches that have the common aim of measuring the motion of the voltage sensor. We interpret the results in light of the recent crystal structure of the mammalian potassium channel Kv1.2. We focus on the transmembrane movement of the voltage sensor as a key element to the detection of membrane potential and to the control of channel gating.


Neuron | 2013

Voltage-Sensing Domain of Voltage-Gated Proton Channel Hv1 Shares Mechanism of Block with Pore Domains

Liang Hong; Medha M. Pathak; Iris H. Kim; Dennis T. Ta; Francesco Tombola

Voltage-gated sodium, potassium, and calcium channels are made of a pore domain (PD) controlled by four voltage-sensing domains (VSDs). The PD contains the ion permeation pathway and the activation gate located on the intracellular side of the membrane. A large number of small molecules are known to inhibit the PD by acting as open channel blockers. The voltage-gated proton channel Hv1 is made of two VSDs and lacks the PD. The location of the activation gate in the VSD is unknown and open channel blockers for VSDs have not yet been identified. Here, we describe a class of small molecules which act as open channel blockers on the Hv1 VSD and find that a highly conserved phenylalanine in the charge transfer center of the VSD plays a key role in blocker binding. We then use one of the blockers to show that Hv1 contains two intracellular and allosterically coupled gates.


Scientific Reports | 2015

Static stretch affects neural stem cell differentiation in an extracellular matrix-dependent manner.

Janahan Arulmoli; Medha M. Pathak; Lisa P. McDonnell; Jamison L. Nourse; Francesco Tombola; James C. Earthman; Lisa A. Flanagan

Neural stem and progenitor cell (NSPC) fate is strongly influenced by mechanotransduction as modulation of substrate stiffness affects lineage choice. Other types of mechanical stimuli, such as stretch (tensile strain), occur during CNS development and trauma, but their consequences for NSPC differentiation have not been reported. We delivered a 10% static equibiaxial stretch to NSPCs and examined effects on differentiation. We found static stretch specifically impacts NSPC differentiation into oligodendrocytes, but not neurons or astrocytes, and this effect is dependent on particular extracellular matrix (ECM)-integrin linkages. Generation of oligodendrocytes from NSPCs was reduced on laminin, an outcome likely mediated by the α6 laminin-binding integrin, whereas similar effects were not observed for NSPCs on fibronectin. Our data demonstrate a direct role for tensile strain in dictating the lineage choice of NSPCs and indicate the dependence of this phenomenon on specific substrate materials, which should be taken into account for the design of biomaterials for NSPC transplantation.


Acta Biomaterialia | 2016

Combination scaffolds of salmon fibrin, hyaluronic acid, and laminin for human neural stem cell and vascular tissue engineering

Janahan Arulmoli; Heather J. Wright; Duc T. T. Phan; Urmi Sheth; Richard A. Que; Giovanni A. Botten; Mark Keating; Elliot L. Botvinick; Medha M. Pathak; Thomas I. Zarembinski; Daniel S. Yanni; Olga V. Razorenova; Christopher C.W. Hughes; Lisa A. Flanagan

Human neural stem/progenitor cells (hNSPCs) are good candidates for treating central nervous system (CNS) trauma since they secrete beneficial trophic factors and differentiate into mature CNS cells; however, many cells die after transplantation. This cell death can be ameliorated by inclusion of a biomaterial scaffold, making identification of optimal scaffolds for hNSPCs a critical research focus. We investigated the properties of fibrin-based scaffolds and their effects on hNSPCs and found that fibrin generated from salmon fibrinogen and thrombin stimulates greater hNSPC proliferation than mammalian fibrin. Fibrin scaffolds degrade over the course of a few days in vivo, so we sought to develop a novel scaffold that would retain the beneficial properties of fibrin but degrade more slowly to provide longer support for hNSPCs. We found combination scaffolds of salmon fibrin with interpenetrating networks (IPNs) of hyaluronic acid (HA) with and without laminin polymerize more effectively than fibrin alone and generate compliant hydrogels matching the physical properties of brain tissue. Furthermore, combination scaffolds support hNSPC proliferation and differentiation while significantly attenuating the cell-mediated degradation seen with fibrin alone. HNSPCs express two fibrinogen-binding integrins, αVβ1 and α5β1, and several laminin binding integrins (α7β1, α6β1, α3β1) that can mediate interaction with the scaffold. Lastly, to test the ability of scaffolds to support vascularization, we analyzed human cord blood-derived endothelial cells alone and in co-culture with hNSPCs and found enhanced vessel formation and complexity in co-cultures within combination scaffolds. Overall, combination scaffolds of fibrin, HA, and laminin are excellent biomaterials for hNSPCs.


Stem Cells | 2014

Membrane Biophysics Define Neuron and Astrocyte Progenitors in the Neural Lineage

Jamison L. Nourse; Javier L. Prieto; Amanda R. Dickson; Jente Lu; Medha M. Pathak; Francesco Tombola; Michael Demetriou; Abraham P. Lee; Lisa A. Flanagan

Neural stem and progenitor cells (NSPCs) are heterogeneous populations of self‐renewing stem cells and more committed progenitors that differentiate into neurons, astrocytes, and oligodendrocytes. Accurately identifying and characterizing the different progenitor cells in this lineage has continued to be a challenge for the field. We found previously that populations of NSPCs with more neurogenic progenitors (NPs) can be distinguished from those with more astrogenic progenitors (APs) by their inherent biophysical properties, specifically the electrophysiological property of whole cell membrane capacitance, which we characterized with dielectrophoresis (DEP). Here, we hypothesize that inherent electrophysiological properties are sufficient to define NPs and APs and test this by determining whether isolation of cells solely by these properties specifically separates NPs and APs. We found NPs and APs are enriched in distinct fractions after separation by electrophysiological properties using DEP. A single round of DEP isolation provided greater NP enrichment than sorting with PSA‐NCAM, which is considered an NP marker. Additionally, cell surface N‐linked glycosylation was found to significantly affect cell fate‐specific electrophysiological properties, providing a molecular basis for the cell membrane characteristics. Inherent plasma membrane biophysical properties are thus sufficient to define progenitor cells of differing fate potential in the neural lineage, can be used to specifically isolate these cells, and are linked to patterns of glycosylation on the cell surface. Stem Cells 2014;32:706–716


Seminars in Cell & Developmental Biology | 2017

How cells channel their stress: Interplay between Piezo1 and the cytoskeleton

Jamison L. Nourse; Medha M. Pathak

Cells constantly encounter mechanical stimuli in their environment, such as dynamic forces and mechanical features of the extracellular matrix. These mechanical cues are transduced into biochemical signals, and integrated with genetic and chemical signals to modulate diverse physiological processes. Cells also actively generate forces to internally transport cargo, to explore the physical properties of their environment and to spatially position themselves and other cells during development. Mechanical forces are therefore central to development, homeostasis, and repair. Several molecular and biophysical strategies are utilized by cells for detecting and generating mechanical forces. Here we discuss an important class of molecules involved in sensing and transducing mechanical forces - mechanically-activated ion channels. We focus primarily on the Piezo1 ion channel, and examine its relationship with the cellular cytoskeleton.

Collaboration


Dive into the Medha M. Pathak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liang Hong

University of California

View shared research outputs
Top Co-Authors

Avatar

Truc Tran

University of California

View shared research outputs
Top Co-Authors

Avatar

Dennis T. Ta

University of California

View shared research outputs
Top Co-Authors

Avatar

Iris H. Kim

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge