Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Medha Priyadarshini is active.

Publication


Featured researches published by Medha Priyadarshini.


Current Medicinal Chemistry | 2014

Oxidative Stress Mediated Mitochondrial and Vascular Lesions as Markers in the Pathogenesis of Alzheimer Disease

Gjumrakch Aliev; Medha Priyadarshini; V. P. Reddy; N.H. Grieg; Yury G. Kaminsky; Ramón Cacabelos; G. Md Ashraf; Nasimudeen R. Jabir; Mohammad Ajmal Kamal; V.N. Nikolenko; Andrey A. Zamyatnin; Valery V. Benberin; S. O. Bachurin

Mitochondrial dysfunction plausibly underlies the aging-associated brain degeneration. Mitochondria play a pivotal role in cellular bioenergetics and cell-survival. Oxidative stress consequent to chronic hypoperfusion induces mitochondrial damage, which is implicated as the primary cause of cerebrovascular accidents (CVA) mediated Alzheimers disease (AD). The mitochondrial function deteriorates with aging, and the mitochondrial damage correlates with increased intracellular production of oxidants and pro-oxidants. The prolonged oxidative stress and the resultant hypoperfusion in the brain tissues stimulate the expression of nitric oxide synthase (NOS) enzymes, which further drives the formation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). The ROS and RNS collectively contributes to the dysfunction of the blood-brain barrier (BBB) and damage to the brain parenchymal cells. Delineating the molecular mechanisms of these processes may provide clues for the novel therapeutic targets for CVA and AD patients.


Molecular Endocrinology | 2015

An acetate-specific GPCR, FFAR2, regulates insulin secretion

Medha Priyadarshini; Stephanie R. Villa; Miles Fuller; Barton Wicksteed; Charles R. Mackay; Thierry Alquier; Vincent Poitout; Helena Mancebo; Raghavendra G. Mirmira; Annette Gilchrist; Brian T. Layden

G protein-coupled receptors have been well described to contribute to the regulation of glucose-stimulated insulin secretion (GSIS). The short-chain fatty acid-sensing G protein-coupled receptor, free fatty acid receptor 2 (FFAR2), is expressed in pancreatic β-cells, and in rodents, its expression is altered during insulin resistance. Thus, we explored the role of FFAR2 in regulating GSIS. First, assessing the phenotype of wild-type and Ffar2(-/-) mice in vivo, we observed no differences with regard to glucose homeostasis on normal or high-fat diet, with a marginally significant defect in insulin secretion in Ffar2(-/-) mice during hyperglycemic clamps. In ex vivo insulin secretion studies, we observed diminished GSIS from Ffar2(-/-) islets relative to wild-type islets under high-glucose conditions. Further, in the presence of acetate, the primary endogenous ligand for FFAR2, we observed FFAR2-dependent potentiation of GSIS, whereas FFAR2-specific agonists resulted in either potentiation or inhibition of GSIS, which we found to result from selective signaling through either Gαq/11 or Gαi/o, respectively. Lastly, in ex vivo insulin secretion studies of human islets, we observed that acetate and FFAR2 agonists elicited different signaling properties at human FFAR2 than at mouse FFAR2. Taken together, our studies reveal that FFAR2 signaling occurs by divergent G protein pathways that can selectively potentiate or inhibit GSIS in mouse islets. Further, we have identified important differences in the response of mouse and human FFAR2 to selective agonists, and we suggest that these differences warrant consideration in the continued investigation of FFAR2 as a novel type 2 diabetes target.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2014

Gene-environment interactions in heavy metal and pesticide carcinogenesis

Shams Tabrez; Medha Priyadarshini; Shubha Priyamvada; Mohd Shahnawaz Khan; Arivarasu Na; Syed Kashif Zaidi

Cancer is a complex disease involving a sequence of gene-environment interactions. Lifestyle, genetics, dietary factors, and environmental pollutants can increase the risk of cancer. Gene-environment interactions have been studied by a candidate-gene approach focusing on metabolism, DNA repair, and apoptosis. Here, we review the influence of gene-environment interactions in carcinogenesis, with emphasis on heavy metal and pesticide exposures.


Journal of Environmental Science and Health Part C-environmental Carcinogenesis & Ecotoxicology Reviews | 2013

Cancer chemoprevention by polyphenols and their potential application as nanomedicine.

Shams Tabrez; Medha Priyadarshini; Maryam Urooj; Shazi Shakil; Ghulam Md Ashraf; Mohd Shahnawaz Khan; Mohammad A. Kamal; Qamre Alam; Nasimudeen R. Jabir; Adel Mohammad Abuzenadah; Adeel Chaudhary; Ghazi A. Damanhouri

Today cancer is a leading cause of death among the developed countries. Its highly complex nature makes it difficult to understand as it entails multiple cellular physiological systems such as cell signaling and apoptosis. The biggest challenges faced by cancer chemoprevention/chemotherapy is maintaining drug circulation and avoiding multidrug resistance. Overall there is modest evidence regarding the protective effects of nutrients from supplements against a number of cancers. Numerous scientific literatures available advocate the use of polyphenols for chemoprevention. Some groups have also suggested use of combination of nutrients in cancer prevention. However, we have yet to obtain the desired results in the line of cancer chemotherapy research. Nanotechnology can play a pivotal role in cancer treatment and prevention. Moreover, nanoparticles can be modified in various ways to prolong circulation, enhance drug localization, increase drug efficacy, and potentially decrease the chances of multidrug resistance. In this communication, we will cover the use of various polyphenols and nutrients in cancer chemoprevention. The application of nanotechnology in this regard will also be included. In view of available reports on the potential of nanoparticles, we suggest their usage along with different combination of nutrients as cancer chemotherapeutic agents.


Cns & Neurological Disorders-drug Targets | 2012

Mitochondria as an Easy Target to Oxidative Stress Events in Parkinson's Disease

Marcella Reale; Mirko Pesce; Medha Priyadarshini; Mohammad A. Kamal; Antonia Patruno

Parkinsons disease (PD) is related to excess production of reactive oxygen species (ROS) or inadequate and impaired detoxification by endogenous antioxidants, alterations in catecholamine metabolism, alterations in mitochondrial electron transfer function, and enhanced iron deposition in the substantia nigra. The concept that oxidative stress is an important mechanism underlying the degeneration of dopaminergic (DAergic) neurons is reinforced by data documenting that high levels of lipid peroxidation, increased oxidation of proteins and DNA and depletion of glutathione are observed in postmortem studies of brain tissues of PD patients. Tyrosine hydroxylase (TH) is an important neuronal enzyme that, in the presence of tetrahydrobiopterin, catalyzes the initial and rate-limiting step in the biosynthesis of the catecholamine neurotransmitters dopamine (DA) and norepinephrine, and is frequently used as a marker of DAergic neuronal loss in animal models of PD. The role for TH as generators of ROS are highly relevant to PD because ROS have been proposed to contribute to the neurodegeneration of DA neurons. Oxidants and superoxide radicals are produced as byproducts of oxidative phosphorylation, making mitochondria the main site of ROS generation within the cell and the site of the first line of defence against oxidative stress. ROS can affect mitochondrial DNA (mtDNA) causing modulation in synthesis of electron transport chain (ETC) components, decreased ATP production, and increased leakage of ROS.


Translational Research | 2014

Maternal short-chain fatty acids are associated with metabolic parameters in mothers and newborns

Medha Priyadarshini; Alexandra L. Thomas; Anna C. Reisetter; Denise M. Scholtens; Thomas M. S. Wolever; Jami L. Josefson; Brian T. Layden

During the course of pregnancy, dynamic remodeling of the gut microbiota occurs and contributes to maternal metabolic changes through an undefined mechanism. Because short chain fatty acids (SCFAs) are a major product of gut microbiome fermentation, we investigated whether serum SCFA levels during pregnancy are related to key metabolic parameters in mothers and newborns. In this prospective study, 20 pregnant women without gestational diabetes were evaluated at 36-38 weeks of gestation, and their newborns were assessed after parturition. In this cohort, which included normal (n = 10) and obese (n = 10) subjects based on prepregnancy body mass index, serum levels of SCFAs (acetate, propionate, and butyrate), maternal adipokines, maternal glucose, and C-peptide were measured at 36-38 weeks of gestation. Maternal weight gain and newborn anthropometrics were also determined. Data were analyzed using linear regression to test for associations, adjusting for prepregnancy obesity. In this cohort, serum acetate levels were associated with maternal weight gain and maternal adiponectin levels. In addition, serum propionate correlated negatively with maternal leptin levels, newborn length, and body weight. Taken together, this study observed that novel relationships exist among maternal SCFA levels and multiple interrelated maternal/newborn metabolic parameters.


Cns & Neurological Disorders-drug Targets | 2012

Targeting Parkinson’s - Tyrosine Hydroxylase and Oxidative Stress as Points of Interventions

Mohd Shahnawaz Khan; Shams Tabrez; Medha Priyadarshini; Shubha Priyamvada; Mohd M. Khan

Parkinsons disease (PD) is characterized by the progressive loss of the dopaminergic neurons leading to decrease in striatal dopamine (DA) levels. In the present review, our focus was on recent advances in the treatment procedures of PD to achieve an increase in deficient tyrosine hydroxylase (TH) activity and/or expression. Stimulation of residual TH activity by the cofactors, 6R-L-erythro-tetrahydrobiopterin (BPH4) or NADH, or by brain transplant of natural TH-containing cells (fetal substantia nigra) or genetically engineered TH-containing cells, has been tried experimentally and clinically lately. As a promising approach to the gene therapy, intrastriatal expression of DAsynthesizing enzymes through transduction with separate adeno-associated virus (AAV) vectors/ marrow stromal cells (MSCs) or nonviral intravenous administration of rat transferrin receptor monoclonal antibody (TfRmAb)-targeted PEGylated immunoliposomes (PILs) has been found to be effective in animal models. Oxidative stress has been identified as one of the intermediary risk factors that could initiate and/or promote degeneration of DA neurons. TH itself is a prime target of oxidative/nitrosative injury. Certain superoxide dismutase and catalase mimetic prevented nitration of TH in cultured dopaminergic neurons. Therefore, development of therapeutic agents that can prevent formation of or specifically remove nitrating agents without interfering with normal neuronal function may protect protein from inactivation and provide means of limiting neuronal injury in PD. Non-pharmacological approaches such as diet therapy or use of active constituents of plants and phytomedicines have also emerged as a new - area of high interest. New treatment strategies for TH dysfunction rectification, a provision for neuroprotection in PD, seem to be on the horizon with many therapies under investigation.


Islets | 2015

FFAR3 modulates insulin secretion and global gene expression in mouse islets.

Medha Priyadarshini; Brian T. Layden

The short chain fatty acid (SCFA) receptor (free fatty acid receptor-3; FFAR3) is expressed in pancreatic β cells; however, its role in insulin secretion is not clearly defined. Here, we examined the role of FFAR3 in insulin secretion. Using islets from global knockout FFAR3 (Ffar3−/−) mice, we explored the role of FFAR3 and ligand-induced FFAR3 signaling on glucose stimulated insulin secretion. RNA sequencing was also performed to gain greater insight into the impact of FFAR3 deletion on the islet transcriptome. First exploring insulin secretion, it was determined that Ffar3−/− islets secrete more insulin in a glucose-dependent manner as compared to wildtype (WT) islets. Next, exploring its primary endogenous ligand, propionate, and a specific agonist for FFAR3, signaling by FFAR3 inhibited glucose-dependent insulin secretion, which occurred through a Gαi/o pathway. To help understand these results, transcriptome analyses by RNA-sequencing of Ffar3−/− and WT islets observed multiple genes with well-known roles in islet biology to be altered by genetic knockout of FFAR3. Our data shows that FFAR3 signaling mediates glucose stimulated insulin secretion through Gαi/o sensitive pathway. Future studies are needed to more rigorously define the role of FFAR3 by in vivo approaches.


Trends in Endocrinology and Metabolism | 2016

SCFA Receptors in Pancreatic β Cells: Novel Diabetes Targets?

Medha Priyadarshini; Barton Wicksteed; Gary E. Schiltz; Annette Gilchrist; Brian T. Layden

Nutrient sensing receptors are key metabolic mediators of responses to dietary and endogenously derived nutrients. These receptors are largely G-protein-coupled receptors (GPCRs) and many are gaining significant interest as drug targets with a potential therapeutic role in metabolic diseases. A distinct subclass of nutrient sensing GPCRs, two short chain fatty acid (SCFA) receptors (FFA2 and FFA3) are uniquely responsive to gut microbiota derived nutrients (such as acetate, propionate, and butyrate). Pharmacological, molecular, and genetic studies have investigated their role in organismal glucose metabolism and recently in pancreatic β cell biology. Here, we summarize the present knowledge on the role of these receptors as metabolic sensors in β cell function and physiology, revealing new therapeutic opportunities for type 2 diabetes.


American Journal of Physiology-endocrinology and Metabolism | 2015

The short-chain fatty acid receptor, FFA2, contributes to gestational glucose homeostasis

Miles Fuller; Medha Priyadarshini; Sean M. Gibbons; Anthony R. Angueira; Michael R. Brodsky; M. Geoffrey Hayes; Petia Kovatcheva-Datchary; Fredrik Bäckhed; Jack A. Gilbert; William L. Lowe; Brian T. Layden

The structure of the human gastrointestinal microbiota can change during pregnancy, which may influence gestational metabolism; however, a mechanism of action remains unclear. Here we observed that in wild-type (WT) mice the relative abundance of Actinobacteria and Bacteroidetes increased during pregnancy. Along with these changes, short-chain fatty acids (SCFAs), which are mainly produced through gut microbiota fermentation, significantly changed in both the cecum and peripheral blood throughout gestation in these mice. SCFAs are recognized by G protein-coupled receptors (GPCRs) such as free fatty acid receptor-2 (FFA2), and we have previously demonstrated that the fatty acid receptor-2 gene (Ffar2) expression is higher in pancreatic islets during pregnancy. Using female Ffar2-/- mice, we explored the physiological relevance of signaling through this GPCR and found that Ffar2-deficient female mice developed fasting hyperglycemia and impaired glucose tolerance in the setting of impaired insulin secretion compared with WT mice during, but not before, pregnancy. Insulin tolerance tests were similar in Ffar2-/- and WT mice before and during pregnancy. Next, we examined the role of FFA2 in gestational β-cell mass, observing that Ffar2-/- mice had diminished gestational expansion of β-cells during pregnancy. Interestingly, mouse genotype had no significant impact on the composition of the gut microbiome, but did affect the observed SCFA profiles, suggesting a functional difference in the microbiota. Together, these results suggest a potential link between increased Ffar2 expression in islets and the alteration of circulating SCFA levels, possibly explaining how changes in the gut microbiome contribute to gestational glucose homeostasis.

Collaboration


Dive into the Medha Priyadarshini's collaboration.

Top Co-Authors

Avatar

Bilqees Bano

Aligarh Muslim University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aaliya Shah

Aligarh Muslim University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shams Tabrez

King Abdulaziz University

View shared research outputs
Top Co-Authors

Avatar

Mohammad Aatif

Aligarh Muslim University

View shared research outputs
Top Co-Authors

Avatar

Fakhra Amin

Aligarh Muslim University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge