Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Medhi Wangpaichitr is active.

Publication


Featured researches published by Medhi Wangpaichitr.


Molecular Cancer Therapeutics | 2007

Under normoxia, 2-deoxy-d-glucose elicits cell death in select tumor types not by inhibition of glycolysis but by interfering with N-linked glycosylation

Metin Kurtoglu; Ningguo Gao; Jie Shang; Johnathan C. Maher; Mark A. Lehrman; Medhi Wangpaichitr; Niramol Savaraj; Andrew N. Lane; Theodore J. Lampidis

In tumor cells growing under hypoxia, inhibiting glycolysis with 2-deoxy-d-glucose (2-DG) leads to cell death, whereas under normoxic conditions cells similarly treated survive. Surprisingly, here we find that 2-DG is toxic in select tumor cell lines growing under normal oxygen tension. In contrast, a more potent glycolytic inhibitor, 2-fluorodeoxy-d-glucose, shows little or no toxicity in these cell types, indicating that a mechanism other than inhibition of glycolysis is responsible for their sensitivity to 2-DG under normoxia. A clue to this other mechanism comes from previous studies in which it was shown that 2-DG interferes with viral N-linked glycosylation and is reversible by exogenous addition of mannose. Similarly, we find that 2-DG interferes with N-linked glycosylation more potently in the tumor cell types that are sensitive to 2-DG under normoxia, which can be reversed by exogenous mannose. Additionally, 2-DG induces an unfolded protein response, including up-regulation of GADD153 (C/EBP-homologous protein), an unfolded protein response–specific mediator of apoptosis, more effectively in 2-DG–sensitive cells. We conclude that 2-DG seems to be toxic in select tumor cell types growing under normoxia by inhibition of N-linked glycosylation and not by glycolysis. Because in a phase I study 2-DG is used in combination with an anticancer agent to target hypoxic cells, our results raise the possibility that in certain cases, 2-DG could be used as a single agent to selectively kill both the aerobic (via interference with glycosylation) and hypoxic (via inhibition of glycolysis) cells of a solid tumor. [Mol Cancer Ther 2007;6(11):3049–58]


Current Pharmaceutical Design | 2008

Arginine deprivation as a targeted therapy for cancer.

Lynn G. Feun; Min You; Chunjing Wu; Macus Tien Kuo; Medhi Wangpaichitr; Seth Spector; Niramol Savaraj

Certain cancers may be auxotrophic for a particular amino acid, and amino acid deprivation is one method to treat these tumors. Arginine deprivation is a novel approach to target tumors which lack argininosuccinate synthetase (ASS) expression. ASS is a key enzyme which converts citrulline to arginine. Tumors which usually do not express ASS include melanoma, hepatocellular carcinoma, some mesotheliomas and some renal cell cancers. Arginine can be degraded by several enzymes including arginine deiminase (ADI). Although ADI is a microbial enzyme from mycoplasma, it has high affinity to arginine and catalyzes arginine to citrulline and ammonia. Citrulline can be recycled back to arginine in normal cells which express ASS, whereas ASS(-) tumor cells cannot. A pegylated form of ADI (ADI-PEG20) has been formulated and has shown in vitro and in vivo activity against melanoma and hepatocellular carcinoma. ADI-PEG20 induces apoptosis in melanoma cell lines. However, arginine deprivation can also induce ASS expression in certain melanoma cell lines which can lead to in vitro drug resistance. Phase I and II clinical trials with ADI-PEG20 have been conducted in patients with melanoma and hepatocellular carcinoma, and antitumor activity has been demonstrated in both cancers. This article reviews our laboratory and clinical experience as well as that from others with ADI-PEG20 as an antineoplastic agent. Future direction in utilizing this agent is also discussed.


Molecular Cancer | 2005

Overcoming cisplatin resistance by mTOR inhibitor in lung cancer

Chunjing Wu; Medhi Wangpaichitr; Lynn G. Feun; Marcus T. Kuo; Carlos Robles; Theodore J. Lampidis; Niramol Savaraj

BackgroundCisplatin resistance is complex and involves several different mechanisms. Employing cDNA microarray analysis, we have found that cisplatin resistant cells share the common characteristic of increase in ribosomal proteins and elongation factors. We hypothesize that in order to survive cisplatin treatment, cells have to synthesize DNA repair proteins, antiapoptotic proteins and growth-stimulating proteins. Thus, by blocking the translation of these proteins, one should be able to restore cisplatin sensitivity. We have studied the role of CCI-779, an ester analog of rapamycin which is known to inhibit translation by disabling mTOR, in restoring cisplatin sensitivity in a panel of cisplatin resistant cell lines. We have also determined the role of CCI-779 in P-gp1 and MRP1 mediated resistance.ResultsOur data show that CCI-779 possess antiproliferative effects in both cisplatin sensitive and resistant cell lines, but shows no effect in P-gp1 and MRP1 overexpressing cell lines. Importantly, CCI-779 at 10 ng/ml (less that 10% of the growth inhibitory effect) can increase the growth inhibition of cisplatin by 2.5–6 fold. Moreover, CCI-779 also enhances the apoptotic effect of cisplatin in cisplatin resistant cell lines. In these resistant cells, adding CCI-779 decreases the amount of 4E-BP phosphorylation and p-70S6 kinase phosphorylation as well as lower the amount of elongation factor while cisplatin alone has no effect. However, CCI-779 can only reverse P-gp mediated drug resistance at a higher dose(1 ug/ml).ConclusionWe conclude that CCI-779 is able to restore cisplatin sensitivity in small cell lung cancer cell lines selected for cisplatin resistance as well as cell lines derived from patients who failed cisplatin. These findings can be further explored for future clinical use. On the other hand, CCI-779 at achievable clinical concentration, has no growth inhibitory effect in P-gp1 or MRP1 overexpressing cells. Furthermore, CCI-779 also appears to be a weak MDR1 reversal agent. Thus, it is not a candidate to use in MDR1 or MRP1 overexpressing cells.


Cancer Chemotherapy and Pharmacology | 2011

2-Deoxy-d-glucose activates autophagy via endoplasmic reticulum stress rather than ATP depletion

Haibin Xi; Metin Kurtoglu; Huaping Liu; Medhi Wangpaichitr; Min You; Xiongfei Liu; Niramol Savaraj; Theodore J. Lampidis

PurposeThe glucose analog and glycolytic inhibitor 2-deoxy-d-glucose (2-DG), which is currently under clinical evaluation for targeting cancer cells, not only blocks glycolysis thereby reducing cellular ATP, but also interferes with N-linked glycosylation, which leads to endoplasmic reticulum (ER) stress and an unfolded protein response (UPR). Both bioenergetic challenge and ER stress have been shown to activate autophagy, a bulk cellular degradation process that plays either a pro- or anti-death role. Here, we investigate which pathway 2-DG interferes with that activates autophagy and the role of this process in modulating 2-DG-induced toxicity.MethodsPancreatic cancer cell line 1420, melanoma cell line MDA-MB-435 and breast cancer cell line SKBR3 were used to investigate the relationship between induction by 2-DG treatment of ER stress/UPR, ATP reduction and activation of autophagy. ER stress/UPR (Grp78 and CHOP) and autophagy (LC3B II) markers were assayed by immunoblotting, while ATP levels were measured using the CellTiter-Glo Luminescent Cell Viability Assay. Autophagy was also measured by immunofluorescence utilizing LC3B antibody. Cell death was detected with a Vi-Cell cell viability analyzer using trypan blue exclusion.ResultsIn the three different cancer cell lines described earlier, we find that 2-DG upregulates autophagy, increases ER stress and lowers ATP levels. Addition of exogenous mannose reverses 2-DG-induced autophagy and ER stress but does not recover the lowered levels of ATP. Moreover, under anaerobic conditions where 2-DG severely depletes ATP, autophagy is diminished rather than activated, which correlates with lowered levels of the ER stress marker Grp78. Additionally, when autophagy is blocked by siRNA, cell sensitivity to 2-DG is increased corresponding with upregulation of ER stress-mediated apoptosis. Similar increased toxicity is observed with 3-methyladenine, a known autophagy inhibitor. In contrast, rapamycin which enhances autophagy reduces 2-DG-induced toxicity.ConclusionsOverall, these results indicate that the major mechanism by which 2-DG stimulates autophagy is through ER stress/UPR and not by lowering ATP levels. Furthermore, autophagy plays a protective role against 2-DG-elicited cell death apparently by relieving ER stress. These data suggest that combining autophagy inhibitors with 2-DG may be useful clinically.


Molecular Cancer Therapeutics | 2007

Hypoxia-inducible factor-1 confers resistance to the glycolytic inhibitor 2-deoxy-d-glucose

Johnathan C. Maher; Medhi Wangpaichitr; Niramol Savaraj; Metin Kurtoglu; Theodore J. Lampidis

Hypoxic regions within solid tumors harbor cells that are resistant to standard chemotherapy and radiotherapy. Because oxygen is required to produce ATP by oxidative phosphorylation, under hypoxia, cells rely more on glycolysis to generate ATP and are thereby sensitive to 2-deoxy-d-glucose (2-DG), an inhibitor of this pathway. Universally, cells respond to lowered oxygen tension by increasing the amount of glycolytic enzymes and glucose transporters via the well-characterized hypoxia-inducible factor-1 (HIF). To evaluate the effects of HIF on 2-DG sensitivity, the following three models were used: (a) cells treated with oligomycin to block mitochondrial function in the presence (HIF+) or absence (HIF−) of hypoxia, (b) cells treated with small interfering RNA specific for HIF-1α and control cells cultured under hypoxia, and (c) a mutant cell line unable to initiate the HIF response and its parental HIF+ counterpart under hypoxic conditions. In all three models, HIF increased resistance to 2-DG and other glycolytic inhibitors but not to other chemotherapeutic agents. Additionally, HIF reduced the effects of 2-DG on glycolysis (as measured by ATP and lactate assays). Because HIF increases glycolytic enzymes, it follows that greater amounts of 2-DG would be required to inhibit glycolysis, thereby leading to increased resistance to it under hypoxia. Indeed, hexokinase, aldolase, and lactate dehydrogenase were found to be increased as a function of HIF under the hypoxic conditions and cell types we used; however, phosphoglucose isomerase was not. Although both hexokinase and phosphoglucose isomerase are known to interact with 2-DG, our findings of increased levels of hexokinase more likely implicate this enzyme in the mechanism of HIF-mediated resistance to 2-DG. Moreover, because 2-DG is now in phase I clinical trials, our results suggest that glycolytic inhibitors may be more effective clinically when combined with agents that inhibit HIF. [Mol Cancer Ther 2007;6(2):732–41]


Current Molecular Medicine | 2010

Arginine Deprivation, Autophagy, Apoptosis (AAA) for the Treatment of Melanoma

Niramol Savaraj; Min You; Chunjing Wu; Medhi Wangpaichitr; Marcus T. Kuo; Lynn G. Feun

The majority of melanoma cells do not express argininosuccinate synthetase (ASS), and hence cannot synthesize arginine from citrulline. Their growth and proliferation depend on exogenous supply of arginine. Arginine degradation using arginine deiminase (ADI) leads to growth inhibition and eventually cell death while normal cell which express ASS can survive. This notion has been translated into clinical trial. Pegylated ADI (ADI-PEG20) has shown antitumor activity in melanoma. However, the sensitivity to ADI is different among ASS(-) melanoma cells. We have investigated and reviewed the signaling pathways which are affected by arginine deprivation and their consequences which lead to cell death. We have found that arginine deprivation inhibits mTOR signaling but leads to activation of MEK and ERK with no changes in BRAF. These changes most likely lead to autophagy, a possible mechanism to survive by recycling intracellular arginine. However apoptosis does occur which can be both caspase dependent or independent In order to increase the therapeutic efficacy of this form of treatment, one should consider adding other agent(s) which can drive the cells toward apoptosis or inhibit the autophagic process.


British Journal of Cancer | 2012

Negative argininosuccinate synthetase expression in melanoma tumours may predict clinical benefit from arginine-depleting therapy with pegylated arginine deiminase

Lynn G. Feun; A Marini; G Walker; G Elgart; F Moffat; S E Rodgers; C J Wu; M You; Medhi Wangpaichitr; M T Kuo; W Sisson; A A Jungbluth; John S. Bomalaski; Niramol Savaraj

Background:Arginine-depleting therapy with pegylated arginine deiminase (ADI-PEG20) was reported to have activity in advanced melanoma in early phase I–II trial, and clinical trials are currently underway in other cancers. However, the optimal patient population who benefit from this treatment is unknown.Methods:Advanced melanoma patients with accessible tumours had biopsy performed before the start of treatment with ADI-PEG20 and at the time of progression or relapse when amenable to determine whether argininosuccinate synthetase (ASS) expression in tumour was predictive of response to ADI-PEG20.Results:Twenty-seven of thirty-eight patients treated had melanoma tumours assessable for ASS staining before treatment. Clinical benefit rate (CBR) and longer time to progression were associated with negative expression of tumour ASS. Only 1 of 10 patients with ASS-positive tumours (ASS+) had stable disease, whereas 4 of 17 (24%) had partial response and 5 had stable disease, when ASS expression was negative (ASS−), giving CBR rates of 52.9 vs 10%, P=0.041. Two responding patients with negative ASS expression before therapy had rebiopsy after tumour progression and the ASS expression became positive. The survival of ASS− patients receiving at least four doses at 320 IU m−2 was significantly better than the ASS+ group at 26.5 vs 8.5 months, P=0.024.Conclusion:ADI-PEG20 is safe and the drug is only efficacious in melanoma patients whose tumour has negative ASS expression. Argininosuccinate synthetase tumour positivity is associated with drug resistance and tumour progression.


European Journal of Pharmacology | 2008

Inhibition of mTOR restores cisplatin sensitivity through down-regulation of growth and anti-apoptotic proteins.

Medhi Wangpaichitr; Chunjing Wu; Min You; Marcus T. Kuo; Lynn G. Feun; Theodore J. Lampidis; Niramol Savaraj

We show that cisplatin resistance in certain lung cancer cell lines can be reversed through inhibition of mTOR (mammalian Target of Rapamycin). These cell lines appear to possess high levels of phospho-mTOR, phospho-AKT and other growth-related proteins, such as hTERT (human telomerase reverse transcriptase), and Cyclin D3 which decrease upon inhibition of mTOR. Interestingly in one cisplatin resistant cell line which expresses BCL2/BCLxL, treatment with mTOR inhibitor (CCI-779) results in decreased levels of these anti-apoptotic proteins and may contribute to increasing apoptosis. Moreover, continuous exposure to CCI-779 was found to increase the expression of the multi-drug resistant P-gp1(P-gycoprotein1) efflux pump and therefore should be taken into consideration when designing clinical trials with this compound.


Molecular Cancer Therapeutics | 2013

Arginine Deiminase Resistance in Melanoma Cells Is Associated with Metabolic Reprogramming, Glucose Dependence, and Glutamine Addiction

Yan Long; Wen Bin Tsai; Medhi Wangpaichitr; Takashi Tsukamoto; Niramol Savaraj; Lynn G. Feun; Macus Tien Kuo

Many malignant human tumors, including melanomas, are auxotrophic for arginine due to reduced expression of argininosuccinate synthetase-1 (ASS1), the rate-limiting enzyme for arginine biosynthesis. Pegylated arginine deiminase (ADI-PEG20), which degrades extracellular arginine, resulting in arginine deprivation, has shown favorable results in clinical trials for treating arginine-auxotrophic tumors. Drug resistance is the major obstacle for effective ADI-PEG20 usage. To elucidate mechanisms of resistance, we established several ADI-PEG20–resistant (ADIR) variants from A2058 and SK-Mel-2 melanoma cells. Compared with the parental lines, these ADIR variants showed the following characteristics: (i) all ADIR cell lines showed elevated ASS1 expression, resulting from the constitutive binding of the transcription factor c-Myc on the ASS1 promoter, suggesting that elevated ASS1 is the major mechanism of resistance; (ii) the ADIR cell lines exhibited enhanced AKT signaling and were preferentially sensitive to PI3K/AKT inhibitors, but reduced mTOR signaling, and were preferentially resistant to mTOR inhibitor; (iii) these variants showed enhanced expression of glucose transporter-1 and lactate dehydrogenase-A, reduced expression of pyruvate dehydrogenase, and elevated sensitivity to the glycolytic inhibitors 2-deoxy-glucose and 3-bromopyruvate, consistent with the enhanced glycolytic pathway (the Warburg effect); (iv) the resistant cells showed higher glutamine dehydrogenase and glutaminase expression and were preferentially vulnerable to glutamine inhibitors. We showed that c-Myc, not elevated ASS1 expression, is involved in upregulation of many of these enzymes because knockdown of c-Myc reduced their expression, whereas overexpressed ASS1 by transfection reduced their expression. This study identified multiple targets for overcoming ADI-PEG resistance in cancer chemotherapy using recombinant arginine-degrading enzymes. Mol Cancer Ther; 12(11); 2581–90. ©2013 AACR.


Molecular and Cellular Biochemistry | 2013

TRAIL induces autophagic protein cleavage through caspase activation in melanoma cell lines under arginine deprivation

Min You; Niramol Savaraj; Macus Tien Kuo; Medhi Wangpaichitr; Javier Varona-Santos; Chunjing Wu; Dao M. Nguyen; Lynn G. Feun

Arginine deprivation is a promising strategy for treating ASS-negative malignant tumors including melanoma. However, autophagy can potentially counteract the effectiveness of this treatment by acting as a pro-survival pathway. By combining tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) with arginine deprivation using ADI-PEG20 (pegylated arginine deiminase), we achieved enhanced apoptosis and accelerated cell death in melanoma cell lines. This implies a switch from autophagy to apoptosis. In our current investigation, we found that TRAIL could induce the cleavage of two key autophagic proteins, Beclin-1 and Atg5, in the combination treatment. Using specific inhibitors for individual caspases, we found that caspase-8 inhibitor could completely abolish the cleavage. Furthermore, caspase-8 inhibitor was able to fully reverse the enhanced cytotoxicity induced by TRAIL. Inhibitors for caspase-3, 6, 9, and 10 were able to block the cleavage of these two autophagic proteins to some extent and correspondingly rescue cells from the cytotoxicity of the combination of TRAIL and arginine deprivation. In contrast, calpain inhibitor could not prevent the cleavage of either Beclin-1 or Atg5, and was unable to prevent cell death. Overall, our data indicate that the cleavage of Beclin-1 and Atg5 by TRAIL-initiated caspase activation is one of the mechanisms that lead to the enhancement of the cytotoxicity in the combination treatment.

Collaboration


Dive into the Medhi Wangpaichitr's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Macus Tien Kuo

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcus T. Kuo

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge