Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Medjda Bellamri is active.

Publication


Featured researches published by Medjda Bellamri.


Journal of Cellular Biochemistry | 2016

Increasing 3D Matrix Rigidity Strengthens Proliferation and Spheroid Development of Human Liver Cells in a Constant Growth Factor Environment.

Jérémy Bomo; Frédéric Ezan; François Tiaho; Medjda Bellamri; Sophie Langouët; Nathalie Théret; Georges Baffet

Mechanical forces influence the growth and shape of virtually all tissues and organs. Recent studies show that increased cell contractibility, growth and differentiation might be normalized by modulating cell tensions. Particularly, the role of these tensions applied by the extracellular matrix during liver fibrosis could influence the hepatocarcinogenesis process. The objective of this study is to determine if 3D stiffness could influence growth and phenotype of normal and transformed hepatocytes and to integrate extracellular matrix (ECM) stiffness to tensional homeostasis. We have developed an appropriate 3D culture model: hepatic cells within three‐dimensional collagen matrices with varying rigidity. Our results demonstrate that the rigidity influenced the cell phenotype and induced spheroid clusters development whereas in soft matrices, Huh7 transformed cells were less proliferative, well‐spread and flattened. We confirmed that ERK1 played a predominant role over ERK2 in cisplatin‐induced death, whereas ERK2 mainly controlled proliferation. As compared to 2D culture, 3D cultures are associated with epithelial markers expression. Interestingly, proliferation of normal hepatocytes was also induced in rigid gels. Furthermore, biotransformation activities are increased in 3D gels, where CYP1A2 enzyme can be highly induced/activated in primary culture of human hepatocytes embedded in the matrix. In conclusion, we demonstrated that increasing 3D rigidity could promote proliferation and spheroid developments of liver cells demonstrating that 3D collagen gels are an attractive tool for studying rigidity‐dependent homeostasis of the liver cells embedded in the matrix and should be privileged for both chronic toxicological and pharmacological drug screening. J. Cell. Biochem. 117: 708–720, 2016.


Chemical Research in Toxicology | 2013

DNA Adducts of the Tobacco Carcinogens 2-Amino-9H-pyrido[2,3-b]indole and 4-Aminobiphenyl Are Formed at Environmental Exposure Levels and Persist in Human Hepatocytes

Gwendoline Nauwelaërs; Medjda Bellamri; Valérie Fessard; Robert J. Turesky; Sophie Langouët

Aromatic amines and structurally related heterocyclic aromatic amines (HAAs) are produced during the combustion of tobacco or during the high-temperature cooking of meat. Exposure to some of these chemicals may contribute to the etiology of several common types of human cancers. 2-Amino-9H-pyrido[2,3-b]indole (AαC) is the most abundant HAA formed in mainstream tobacco smoke: it arises in amounts that are 25-100 times greater than the levels of the arylamine, 4-aminobiphenyl (4-ABP), a human carcinogen. 2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) is a prevalent HAA formed in cooked meats. AαC and MeIQx are rodent carcinogens; however, their carcinogenic potency in humans is unknown. A preliminary assessment of the carcinogenic potential of these HAAs in humans was conducted by examining the capacity of primary human hepatocytes to form DNA adducts of AαC and MeIQx, in comparison to 4-ABP, followed by the kinetics of DNA adduct removal by cellular enzyme repair systems. The principal DNA adducts formed were N-(deoxyguanosin-8-yl) (dG-C8) adducts. Comparable levels of DNA adducts were formed with AαC and 4-ABP, whereas adduct formation was ∼5-fold lower for MeIQx. dG-C8-AαC and dG-C8-4-ABP were formed at comparable levels in a concentration-dependent manner in human hepatocytes treated with procarcinogens over a 10,000-fold concentration range (1 nM-10 μM). Pretreatment of hepatocytes with furafylline, a selective inhibitor of cytochrome P450 1A2, resulted in a strong diminution of DNA adducts signifying that P450 1A2 is a major P450 isoform involved in bioactivation of these procarcinogens. The kinetics of adduct removal varied for each hepatocyte donor. Approximately half of the DNA adducts were removed within 24 h of treatment; however, the remaining lesions persisted over 5 days. The high levels of AαC present in tobacco smoke and its propensity to form persistent DNA adducts in human hepatocytes suggest that AαC can contribute to DNA damage and the risk of hepatocellular cancer in smokers.


Journal of Biological Chemistry | 2015

2-Amino-9H-pyrido[2,3-b]indole (AαC) Adducts and Thiol Oxidation of Serum Albumin as Potential Biomarkers of Tobacco Smoke

Khyatiben V. Pathak; Medjda Bellamri; Yi Wang; Sophie Langouët; Robert J. Turesky

Background: The reactivity of AαC, a tobacco smoke carcinogen, was investigated with DNA and albumin of human hepatocytes. Results: Hepatocytes bioactivate AαC to metabolites, which adduct to DNA and albumin. Conclusion: Cys34 and Met329 of serum albumin are targets for AαC electrophiles. Significance: AαC forms macromolecular adducts and induces oxidative stress, which may be contributing factors to liver damage and cancer risk in smokers. 2-Amino-9H-pyrido[2,3-b]indole (AαC) is a carcinogenic heterocyclic aromatic amine formed during the combustion of tobacco. AαC undergoes bioactivation to form electrophilic N-oxidized metabolites that react with DNA to form adducts, which can lead to mutations. Many genotoxicants and toxic electrophiles react with human serum albumin (albumin); however, the chemistry of reactivity of AαC with proteins has not been studied. The genotoxic metabolites, 2-hydroxyamino-9H-pyrido[2,3-b]indole (HONH-AαC), 2-nitroso-9H-pyrido[2,3-b]indole (NO-AαC), N-acetyloxy-2-amino-9H-pyrido[2,3-b]indole (N-acetoxy-AαC), and their [13C6]AαC-labeled homologues were reacted with albumin. Sites of adduction of AαC to albumin were identified by data-dependent scanning and targeted bottom-up proteomics approaches employing ion trap and Orbitrap MS. AαC-albumin adducts were formed at Cys34, Tyr140, and Tyr150 residues when albumin was reacted with HONH-AαC or NO-AαC. Sulfenamide, sulfinamide, and sulfonamide adduct formation occurred at Cys34 (AαC-Cys34). N-Acetoxy-AαC also formed an adduct at Tyr332. Albumin-AαC adducts were characterized in human plasma treated with N-oxidized metabolites of AαC and human hepatocytes exposed to AαC. High levels of N-(deoxyguanosin-8-yl)-AαC (dG-C8-AαC) DNA adducts were formed in hepatocytes. The Cys34 was the sole amino acid of albumin to form adducts with AαC. Albumin also served as an antioxidant and scavenged reactive oxygen species generated by metabolites of AαC in hepatocytes; there was a strong decrease in reduced Cys34, whereas the levels of Cys34 sulfinic acid (Cys-SO2H), Cys34-sulfonic acid (Cys-SO3H), and Met329 sulfoxide were greatly increased. Cys34 adduction products and Cys-SO2H, Cys-SO3H, and Met329 sulfoxide may be potential biomarkers to assess exposure and oxidative stress associated with AαC and other arylamine toxicants present in tobacco smoke.


Chemical Research in Toxicology | 2015

Mass Spectrometric Characterization of Human Serum Albumin Adducts Formed with N-Oxidized Metabolites of 2-Amino-1-methylphenylimidazo[4,5-b]pyridine in Human Plasma and Hepatocytes.

Yi Wang; Lijuan Peng; Medjda Bellamri; Sophie Langouët; Robert J. Turesky

2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a carcinogenic heterocyclic aromatic amine formed in cooked meats, is metabolically activated to electrophilic intermediates that form covalent adducts with DNA and protein. We previously identified an adduct of PhIP formed at the Cys(34) residue of human serum albumin following reaction of albumin with the genotoxic metabolite 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine (HONH-PhIP). The major adducted peptide recovered from a tryptic/chymotryptic digest was identified as the missed-cleavage peptide LQQC*([SO2PhIP])PFEDHVK, a [cysteine-S-yl-PhIP]-S-dioxide linked adduct. In this investigation, we have characterized the albumin adduction products of N-sulfooxy-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-sulfooxy-PhIP), which is thought to be a major genotoxic metabolite of PhIP formed in vivo. Targeted and data-dependent scanning methods showed that N-sulfooxy-PhIP adducted to the Cys(34) of albumin in human plasma to form LQQC*([SO2PhIP])PFEDHVK at levels that were 8-10-fold greater than the adduct levels formed with N-(acetyloxy)-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-acetoxy-PhIP) or HONH-PhIP. We also discovered that N-sulfooxy-PhIP forms an adduct at the sole tryptophan (Trp(214)) residue of albumin in the sequence AW*([PhIP])AVAR. However, stable adducts of PhIP with albumin were not detected in human hepatocytes. Instead, PhIP and 2-amino-1-methyl-6-(5-hydroxy)phenylimidazo[4,5-b]pyridine (5-HO-PhIP), a solvolysis product of the proposed nitrenium ion of PhIP, were recovered during the proteolysis, suggesting a labile sulfenamide linkage had formed between an N-oxidized intermediate of PhIP and Cys(34) of albumin. A stable adduct was formed at the Tyr(411) residue of albumin in hepatocytes and identified as a deaminated product of PhIP, Y(*[desaminoPhIP])TK, where the 4-HO-tyrosine group bound to the C-2 imidazole atom of PhIP.


Environmental and Molecular Mutagenesis | 2016

Human T lymphocytes bioactivate heterocyclic aromatic amines by forming DNA adducts.

Medjda Bellamri; Ludovic Le Hégarat; Laurent Vernhet; Georges Baffet; Robert J. Turesky; Sophie Langouët

Heterocyclic aromatic amines (HAA) are formed in cooked meat, poultry and fish but also arise in tobacco smoke and exhaust gases. HAA are potential human carcinogens, which require metabolic activation to exert their genotoxicity. Human tissues can bioactivate HAA to produce reactive intermediates that bind to DNA. HAA DNA adduct formation occurs in human hepatocytes; however, the potential of HAA to form DNA adducts has not been investigated in human T lymphocytes. In this study, we investigated the ability of human T lymphocytes activated with PMA/Ionomycin or CD3/CD28 to express functional CYP1 activity and bioactivate three major HAA: 2‐amino‐1‐methyl‐6‐phenylimidazo[4,5‐b]pyridine (PhIP), 2‐amino‐3,8‐dimethylimidazo[4,5‐f]quinoxaline (MeIQx), and 2‐amino‐9H‐pyrido[2,3‐b]indole (AαC) to form DNA adducts. Adducts were measured by ultraperformance liquid chromatography‐electrospray ionization/multistage scan mass spectrometry. The highest level of DNA adducts occurred for AαC (16 adducts per 109 nucleotides), followed by PhIP (9 adducts per 109 nucleotides). In contrast, DNA adducts formed from MeIQx and the structurally related aromatic amine 4‐aminobiphenyl, a known human carcinogen, were below the limit of detection (< 3 adducts per 109 nucleotides). Moreover, we demonstrate that AαC is a potent inducer of CYP1A1 and CYP1B1 activity through a transcriptional mechanism involving the AhR pathway. Overall, our results highlight the capacity of activated human T lymphocytes to more efficiently bioactivate AαC to form DNA adducts than other prominent HAA or 4‐ABP. Environ. Mol. Mutagen. 57:656–667, 2016.


Mass Spectrometry Reviews | 2018

DNA adducts: Formation, biological effects, and new biospecimens for mass spectrometric measurements in humans

Byeong Hwa Yun; Jingshu Guo; Medjda Bellamri; Robert J. Turesky

Hazardous chemicals in the environment and diet or their electrophilic metabolites can form adducts with genomic DNA, which can lead to mutations and the initiation of cancer. In addition, reactive intermediates can be generated in the body through oxidative stress and damage the genome. The identification and measurement of DNA adducts are required for understanding exposure and the causal role of a genotoxic chemical in cancer risk. Over the past three decades, 32 P-postlabeling, immunoassays, gas chromatography/mass spectrometry, and liquid chromatography/mass spectrometry (LC/MS) methods have been established to assess exposures to chemicals through measurements of DNA adducts. It is now possible to measure some DNA adducts in human biopsy samples, by LC/MS, with as little as several milligrams of tissue. In this review article, we highlight the formation and biological effects of DNA adducts, and highlight our advances in human biomonitoring by mass spectrometric analysis of formalin-fixed paraffin-embedded tissues, untapped biospecimens for carcinogen DNA adduct biomarker research.


Carcinogenesis | 2018

Biomonitoring an albumin adduct of the cooked meat carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine in humans

Medjda Bellamri; Yi Wang; Kim Yonemori; Kami K. White; Lynne R. Wilkens; Loic Le Marchand; Robert J. Turesky

2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is formed in cooked meats and may be linked to dietary-associated colorectal, prostate and mammary cancers. Genotoxic N-oxidized metabolites of PhIP react with the Cys34 of albumin (Alb) to form a sulfinamide adduct, a biomarker of the biologically effective dose. We examined the kinetics of PhIP-Alb adduct formation in plasma of volunteers on a 4-week semicontrolled diet of cooked meat containing known quantities of PhIP. The adduct was below the limit of detection (LOD) (10 femtograms PhIP/mg Alb) in most subjects before the meat feeding but increased by up to 560-fold at week 4 in subjects who ate meat containing 8.0 to 11.7 μg of PhIP per 150-200 g serving. In contrast, the adduct remained below the LOD in subjects who ingested 1.2 or 3.0 μg PhIP per serving. Correlations were not seen between PhIP-Alb adduct levels and PhIP intake levels (P = 0.76), the amount of PhIP accrued in hair (P = 0.13), the amounts of N-oxidized urinary metabolites of PhIP (P = 0.66) or caffeine CYP1A2 activity (P = 0.55), a key enzyme involved in the bioactivation of PhIP. The half-life of the PhIP-Alb adduct was <2 weeks, signifying that the adduct was not stable. PhIP-Alb adduct formation is direct evidence of bioactivation of PhIP in vivo. However, the PhIP hair biomarker is a longer lived and more sensitive biomarker to assess exposure to this potential human carcinogen.


Analytical Chemistry | 2018

Method for Biomonitoring DNA Adducts in Exfoliated Urinary Cells by Mass Spectrometry

Byeong Hwa Yun; Medjda Bellamri; Thomas A. Rosenquist; Robert J. Turesky

Tobacco smoking contributes to about 50% of the bladder-cancer (BC) cases in the United States. Some aromatic amines in tobacco smoke are bladder carcinogens; however, other causal agents of BC are uncertain. Exfoliated urinary cells (EUCs) are a promising noninvasive biospecimen to screen for DNA adducts of chemicals that damage the bladder genome, although the analysis of DNA adducts in EUCs is technically challenging because of the low number of EUCs and limiting quantity of cellular DNA. Moreover, EUCs and their DNA adducts must remain viable during the time of collection and storage of urine to develop robust screening methods. We employed RT4 cells, a well-differentiated transitional epithelial bladder cell line, as a cell-model system in urine to investigate cell viability and the chemical stability of DNA adducts of two prototypical bladder carcinogens: 4-aminobiphenyl (4-ABP), an aromatic amine found in tobacco smoke, and aristolochic acid I (AA-I), a nitrophenanthrene found in Aristolochia herbaceous plants used for medicinal purposes worldwide. The cell viability of RT4 cells pretreated with 4-ABP or AA-I in urine exceeded 80%, and the major DNA adducts of 4-ABP and AA-I, quantified by liquid chromatography-mass spectrometry, were stable for 24 h. Thereafter, we successfully screened EUCs of mice treated with AA-I to measure DNA adducts of AA-I, which were still detected 25 days following treatment with the carcinogen. EUCs are promising biospecimens that can be employed for the screening of DNA adducts of environmental and dietary genotoxicants that may contribute to the development of BC.


Archive | 2015

Heterocyclic Aromatic Amines: An Update on the Science

Medjda Bellamri; Robert J. Turesky

Red meat is a high source of proteins, and essential micronutrients and minerals such as B vitamins and iron. The cooking of red meats improves the digestibility of meats, and the Maillard browning reactions produce desirable flavors and aromas in meat dishes and enhances sensory experience of dining. However, the cooking of meats at elevated temperatures also produce a series of more than 20 genotoxic heterocyclic aromatic amines (HAAs). These compounds are commonly formed at the parts-per-billion levels in cooked meats. All HAAs tested thus far are carcinogenic in long-term feeding studies in rodents. Some epidemiological studies have observed an association between frequent consumption of well-done cooked red meats and an elevated risk of colorectal cancer; positive associations also have been reported for the consumption of cooked red meat and cancers of the pancreas and the prostate. In this review article, we highlight the knowledge compiled on the chemistry of formation of HAAs in cooked meats and their metabolism, biological and toxicological effects in bacteria and mammalian cells, experimental laboratory animals, and humans.


Chemical Research in Toxicology | 2017

Metabolism of the Tobacco Carcinogen 2-Amino-9H-pyrido[2,3-b]indole (AαC) in Primary Human Hepatocytes

Medjda Bellamri; Ludovic Le Hégarat; Robert J. Turesky; Sophie Langouët

Collaboration


Dive into the Medjda Bellamri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi Wang

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge