Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Meenakshi Hegde is active.

Publication


Featured researches published by Meenakshi Hegde.


Journal of Clinical Oncology | 2015

Human Epidermal Growth Factor Receptor 2 (HER2) –Specific Chimeric Antigen Receptor–Modified T Cells for the Immunotherapy of HER2-Positive Sarcoma

Nabil Ahmed; Vita S. Brawley; Meenakshi Hegde; Catherine Robertson; Alexia Ghazi; Claudia Gerken; Enli Liu; Olga Dakhova; Aidin Ashoori; Amanda Corder; Tara Gray; Meng Fen Wu; Hao Liu; John Hicks; Nino Rainusso; Gianpietro Dotti; Zhuyong Mei; Bambi Grilley; Adrian P. Gee; Cliona M. Rooney; Malcolm K. Brenner; Helen E. Heslop; Winfried S. Wels; Lisa L. Wang; Peter M. Anderson; Stephen Gottschalk

PURPOSE The outcome for patients with metastatic or recurrent sarcoma remains poor. Adoptive therapy with tumor-directed T cells is an attractive therapeutic option but has never been evaluated in sarcoma. PATIENTS AND METHODS We conducted a phase I/II clinical study in which patients with recurrent/refractory human epidermal growth factor receptor 2 (HER2) -positive sarcoma received escalating doses (1 × 10(4)/m(2) to 1 × 10(8)/m(2)) of T cells expressing an HER2-specific chimeric antigen receptor with a CD28.ζ signaling domain (HER2-CAR T cells). RESULTS We enrolled 19 patients with HER2-positive tumors (16 osteosarcomas, one Ewing sarcoma, one primitive neuroectodermal tumor, and one desmoplastic small round cell tumor). HER2-CAR T-cell infusions were well tolerated with no dose-limiting toxicity. At dose level 3 (1 × 10(5)/m(2)) and above, we detected HER2-CAR T cells 3 hours after infusion by quantitative polymerase chain reaction in 14 of 16 patients. HER2-CAR T cells persisted for at least 6 weeks in seven of the nine evaluable patients who received greater than 1 × 10(6)/m(2) HER2-CAR T cells (P = .005). HER2-CAR T cells were detected at tumor sites of two of two patients examined. Of 17 evaluable patients, four had stable disease for 12 weeks to 14 months. Three of these patients had their tumor removed, with one showing ≥ 90% necrosis. The median overall survival of all 19 infused patients was 10.3 months (range, 5.1 to 29.1 months). CONCLUSION This first evaluation of the safety and efficacy of HER2-CAR T cells in patients with cancer shows the cells can persist for 6 weeks without evident toxicities, setting the stage for studies that combine HER2-CAR T cells with other immunomodulatory approaches to enhance their expansion and persistence.


Molecular therapy. Nucleic acids | 2013

TanCAR: A Novel Bispecific Chimeric Antigen Receptor for Cancer Immunotherapy

Zakaria Grada; Meenakshi Hegde; Tiara Byrd; Donald R. Shaffer; Alexia Ghazi; Vita S. Brawley; Amanda Corder; Kurt Schönfeld; Joachim Koch; Gianpietro Dotti; Helen E. Heslop; Stephen Gottschalk; Winfried S. Wels; Matthew L. Baker; Nabil Ahmed

Targeted T cells are emerging as effective non-toxic therapies for cancer. Multiple elements, however, contribute to the overall pathogenesis of cancer through both distinct and redundant mechanisms. Hence, targeting multiple cancer-specific markers simultaneously could result in better therapeutic efficacy. We created a functional chimeric antigen receptor—the TanCAR, a novel artificial molecule that mediates bispecific activation and targeting of T cells. We demonstrate the feasibility of cumulative integration of structure and docking simulation data using computational tools to interrogate the design and predict the functionality of such a complex bispecific molecule. Our prototype TanCAR induced distinct T cell reactivity against each of two tumor restricted antigens, and produced synergistic enhancement of effector functions when both antigens were simultaneously encountered. Furthermore, the TanCAR preserved the cytolytic ability of T cells upon loss of one of the target molecules and better controlled established experimental tumors by recognition of both targets in an animal disease model. This proof-of-concept approach can be used to increase the specificity of effector cells for malignant versus normal target cells, to offset antigen escape or to allow for targeting the tumor and its microenvironment.


Molecular Therapy | 2013

Combinational targeting offsets antigen escape and enhances effector functions of adoptively transferred T cells in glioblastoma.

Meenakshi Hegde; Amanda Corder; Kevin Chow; Malini Mukherjee; Aidin Ashoori; Yvonne Kew; Yi Jonathan Zhang; David S. Baskin; Fatima A. Merchant; Vita S. Brawley; Tiara Byrd; Simone Krebs; Meng Fen Wu; Hao Liu; Helen E. Heslop; Stephen Gottachalk; Eric Yvon; Nabil Ahmed

Preclinical and early clinical studies have demonstrated that chimeric antigen receptor (CAR)-redirected T cells are highly promising in cancer therapy. We observed that targeting HER2 in a glioblastoma (GBM) cell line results in the emergence of HER2-null tumor cells that maintain the expression of nontargeted tumor-associated antigens. Combinational targeting of these tumor-associated antigens could therefore offset this escape mechanism. We studied the single-cell coexpression patterns of HER2, IL-13Rα2, and EphA2 in primary GBM samples using multicolor flow cytometry and immunofluorescence, and applied a binomial routine to the permutations of antigen expression and the related odds of complete tumor elimination. This mathematical model demonstrated that cotargeting HER2 and IL-13Rα2 could maximally expand the therapeutic reach of the T cell product in all primary tumors studied. Targeting a third antigen did not predict an added advantage in the tumor cohort studied. We therefore generated bispecific T cell products from healthy donors and from GBM patients by pooling T cells individually expressing HER2 and IL-13Rα2-specific CARs and by making individual T cells to coexpress both molecules. Both HER2/IL-13Rα2-bispecific T cell products offset antigen escape, producing enhanced effector activity in vitro immunoassays (against autologous glioma cells in the case of GBM patient products) and in an orthotopic xenogeneic murine model. Further, T cells coexpressing HER2 and IL-13Rα2-CARs exhibited accentuated yet antigen-dependent downstream signaling and a particularly enhanced antitumor activity.Preclinical and early clinical studies have demonstrated that chimeric antigen receptor (CAR)-redirected T cells are highly promising in cancer therapy. We observed that targeting HER2 in a glioblastoma (GBM) cell line results in the emergence of HER2-null tumor cells that maintain the expression of nontargeted tumor-associated antigens. Combinational targeting of these tumor-associated antigens could therefore offset this escape mechanism. We studied the single-cell coexpression patterns of HER2, IL-13Rα2, and EphA2 in primary GBM samples using multicolor flow cytometry and immunofluorescence, and applied a binomial routine to the permutations of antigen expression and the related odds of complete tumor elimination. This mathematical model demonstrated that cotargeting HER2 and IL-13Rα2 could maximally expand the therapeutic reach of the T cell product in all primary tumors studied. Targeting a third antigen did not predict an added advantage in the tumor cohort studied. We therefore generated bispecific T cell products from healthy donors and from GBM patients by pooling T cells individually expressing HER2 and IL-13Rα2-specific CARs and by making individual T cells to coexpress both molecules. Both HER2/IL-13Rα2-bispecific T cell products offset antigen escape, producing enhanced effector activity in vitro immunoassays (against autologous glioma cells in the case of GBM patient products) and in an orthotopic xenogeneic murine model. Further, T cells coexpressing HER2 and IL-13Rα2-CARs exhibited accentuated yet antigen-dependent downstream signaling and a particularly enhanced antitumor activity.


Journal of Clinical Investigation | 2016

Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape

Meenakshi Hegde; Malini Mukherjee; Zakaria Grada; Antonella Pignata; Daniel Landi; Shoba A. Navai; Amanda Wakefield; Kristen Fousek; Kevin Bielamowicz; Kevin Chow; Vita S. Brawley; Tiara Byrd; Simone Krebs; Stephen Gottschalk; Winfried S. Wels; Matthew L. Baker; Gianpietro Dotti; Maksim Mamonkin; Malcolm K. Brenner; Jordan S. Orange; Nabil Ahmed

In preclinical models of glioblastoma, antigen escape variants can lead to tumor recurrence after treatment with CAR T cells that are redirected to single tumor antigens. Given the heterogeneous expression of antigens on glioblastomas, we hypothesized that a bispecific CAR molecule would mitigate antigen escape and improve the antitumor activity of T cells. Here, we created a CAR that joins a HER2-binding scFv and an IL13Rα2-binding IL-13 mutein to make a tandem CAR exodomain (TanCAR) and a CD28.ζ endodomain. We determined that patient TanCAR T cells showed distinct binding to HER2 or IL13Rα2 and had the capability to lyse autologous glioblastoma. TanCAR T cells exhibited activation dynamics that were comparable to those of single CAR T cells upon encounter of HER2 or IL13Rα2. We observed that TanCARs engaged HER2 and IL13Rα2 simultaneously by inducing HER2-IL13Rα2 heterodimers, which promoted superadditive T cell activation when both antigens were encountered concurrently. TanCAR T cell activity was more sustained but not more exhaustible than that of T cells that coexpressed a HER2 CAR and an IL13Rα2 CAR, T cells with a unispecific CAR, or a pooled product. In a murine glioblastoma model, TanCAR T cells mitigated antigen escape, displayed enhanced antitumor efficacy, and improved animal survival. Thus, TanCAR T cells show therapeutic potential to improve glioblastoma control by coengaging HER2 and IL13Rα2 in an augmented, bivalent immune synapse that enhances T cell functionality and reduces antigen escape.


JAMA Oncology | 2017

HER2-Specific Chimeric Antigen Receptor–Modified Virus-Specific T Cells for Progressive Glioblastoma: A Phase 1 Dose-Escalation Trial

Nabil Ahmed; Vita S. Brawley; Meenakshi Hegde; Kevin Bielamowicz; Mamta Kalra; Daniel Landi; Catherine Robertson; Tara L. Gray; Oumar Diouf; Amanda Wakefield; Alexia Ghazi; Claudia Gerken; Zhongzhen Yi; Aidin Ashoori; Meng Fen Wu; Hao Liu; Cliona M. Rooney; Gianpietro Dotti; Adrian P. Gee; Jack Su; Yvonne Kew; David S. Baskin; Yi Jonathan Zhang; Pamela New; Bambi Grilley; Milica Stojakovic; John Hicks; Suzanne Z. Powell; Malcolm K. Brenner; Helen E. Heslop

Importance Glioblastoma is an incurable tumor, and the therapeutic options for patients are limited. Objective To determine whether the systemic administration of HER2-specific chimeric antigen receptor (CAR)–modified virus-specific T cells (VSTs) is safe and whether these cells have antiglioblastoma activity. Design, Setting, and Participants In this open-label phase 1 dose-escalation study conducted at Baylor College of Medicine, Houston Methodist Hospital, and Texas Children’s Hospital, patients with progressive HER2-positive glioblastoma were enrolled between July 25, 2011, and April 21, 2014. The duration of follow-up was 10 weeks to 29 months (median, 8 months). Interventions Monotherapy with autologous VSTs specific for cytomegalovirus, Epstein-Barr virus, or adenovirus and genetically modified to express HER2-CARs with a CD28.&zgr;-signaling endodomain (HER2-CAR VSTs). Main Outcomes and Measures Primary end points were feasibility and safety. The key secondary end points were T-cell persistence and their antiglioblastoma activity. Results A total of 17 patients (8 females and 9 males; 10 patients ≥18 years [median age, 60 years; range, 30-69 years] and 7 patients <18 years [median age, 14 years; range, 10-17 years]) with progressive HER2-positive glioblastoma received 1 or more infusions of autologous HER2-CAR VSTs (1 × 106/m2 to 1 × 108/m2) without prior lymphodepletion. Infusions were well tolerated, with no dose-limiting toxic effects. HER2-CAR VSTs were detected in the peripheral blood for up to 12 months after the infusion by quantitative real-time polymerase chain reaction. Of 16 evaluable patients (9 adults and 7 children), 1 had a partial response for more than 9 months, 7 had stable disease for 8 weeks to 29 months, and 8 progressed after T-cell infusion. Three patients with stable disease are alive without any evidence of progression during 24 to 29 months of follow-up. For the entire study cohort, median overall survival was 11.1 months (95% CI, 4.1-27.2 months) from the first T-cell infusion and 24.5 months (95% CI, 17.2-34.6 months) from diagnosis. Conclusions and Relevance Infusion of autologous HER2-CAR VSTs is safe and can be associated with clinical benefit for patients with progressive glioblastoma. Further evaluation of HER2-CAR VSTs in a phase 2b study is warranted as a single agent or in combination with other immunomodulatory approaches for glioblastoma.


Journal of Immunotherapy | 2012

Generation of polyclonal CMV-specific T cells for the adoptive immunotherapy of glioblastoma.

Alexia Ghazi; Aidin Ashoori; Patrick J. Hanley; Vita S. Brawley; Donald R. Shaffer; Yvonne Kew; Suzanne Z. Powell; Robert G. Grossman; Zakaria Grada; Michael E. Scheurer; Meenakshi Hegde; Ann M. Leen; Catherine M. Bollard; Cliona M. Rooney; Helen E. Heslop; Stephen Gottschalk; Nabil Ahmed

Glioblastoma (GBM) is the most common primary brain cancer in adults and is virtually incurable. Recent studies have shown that cytomegalovirus (CMV) is present in majority of GBMs. To evaluate whether the CMV antigens pp65 and IE1, which are expressed in GBMs, could be targeted by CMV-specific T cells, we measured the frequency of T cells targeting pp65 and IE1 in the peripheral blood of a cohort of 11 sequentially diagnosed CMV-seropositive GBM patients, and evaluated whether it was feasible to expand autologous CMV-specific T cells for future clinical studies. All 11 CMV-seropositive GBM patients had T cells specific for pp65 and IE1 in their peripheral blood assessed by IFN&ggr; enzyme-linked immunospot assay. However, the precursor frequency of pp65-specific T cells was decreased in comparison with healthy donors (P=0.001). We successfully reactivated and expanded CMV-specific T cells from 6 out of 6 GBM patients using antigen-presenting cells transduced with an adenoviral vector encoding pp65 and IE1. CMV-specific T-cell lines contained CD4+ as well as CD8+ T cells, recognized pp65+ and IE1+ targets and killed CMV-infected autologous GBM cells. Infusion of such CMV-specific T-cell lines may extend the benefits of T-cell therapy to patients with CMV+ GBMs.


Cytotherapy | 2014

T cells redirected to interleukin-13Rα2 with interleukin-13 mutein--chimeric antigen receptors have anti-glioma activity but also recognize interleukin-13Rα1.

Simone Krebs; Kevin Chow; Zhongzhen Yi; Tania Rodriguez-Cruz; Meenakshi Hegde; Claudia Gerken; Nabil Ahmed; Stephen Gottschalk

BACKGROUND AIMS Outcomes for patients with glioblastoma remain poor despite aggressive multimodal therapy. Immunotherapy with genetically modified T cells expressing chimeric antigen receptors (CARs) targeting interleukin (IL) 13Rα2, human epidermal growth factor receptor 2, epidermal growth factor variant III or erythropoietin-producing hepatocellular carcinoma A2 has shown promise for the treatment of glioma in preclinical models. On the basis of IL13Rα2 immunotoxins that contain IL13 molecules with one or two amino acid substitutions (IL13 muteins) to confer specificity to IL13Rα2, investigators have constructed CARS with IL13 muteins as antigen-binding domains. Whereas the specificity of IL13 muteins in the context of immunotoxins is well characterized, limited information is available for CAR T cells. METHODS We constructed four second-generation CARs with IL13 muteins with one or two amino acid substitutions, and evaluated the effector function of IL13-mutein CAR T cells in vitro and in vivo. RESULTS T cells expressing all four CARs recognized IL13Rα1 or IL13Rα2 recombinant protein in contrast to control protein (IL4R) as judged by interferon-γ production. IL13 protein produced significantly more IL2, indicating that IL13 mutein-CAR T cells have a higher affinity to IL13Rα2 than to IL13Rα1. In cytotoxicity assays, CAR T cells killed IL13Rα1- and/or IL13Rα2-positive cells in contrast to IL13Rα1- and IL13Rα2-negative controls. Although we observed no significant differences between IL13 mutein-CAR T cells in vitro, only T cells expressing IL13 mutein-CARs with an E13K amino acid substitution had anti-tumor activity in vivo that resulted in a survival advantage of treated animals. CONCLUSIONS Our study highlights that the specificity/avidity of ligands is context-dependent and that evaluating CAR T cells in preclinical animal model is critical to assess their potential benefit.


Journal for ImmunoTherapy of Cancer | 2015

Autologous HER2 CMV bispecific CAR T cells are safe and demonstrate clinical benefit for glioblastoma in a Phase I trial.

Nabil Ahmed; Vita S. Brawley; Meenakshi Hegde; Kevin Bielamowicz; Amanda Wakefield; Alexia Ghazi; Aidin Ashoori; Oumar Diouf; Claudia Gerken; Daniel Landi; Mamta Kalra; Zhongzhen Yi; Cliona M. Rooney; Gianpietro Dotti; Adrian P. Gee; Helen E. Heslop; Stephen Gottschalk; Suzanne Z. Powell; Robert G. Grossman; Winfried S. Wels; Yzonne Kew; David S. Baskin; Jonathan Zhang; Pamela New; John Hicks

Glioblastoma (GBM) remains incurable with current standard-of-care therapies. Adoptive T cell transfer holds the promise to improve outcomes for GBM patients. We report on the results of the Phase I clinical study, NCT01109095, administering autologous CMV.pp65 T cells grafted with a second generation HER2 chimeric antigen receptor (CAR) with a CD28.zeta signaling domain to patients with progressive GBM. Seventeen CMV-seropositive patients with radiologically progressive HER2+ GBM were enrolled. The median age was 49 years (range 11 to 71; 6 children; 11 adults). Children enrolled had significantly larger tumor volumes at infusion. A cell product was successfully generated for all patients from a peripheral blood draw (maximum 90mL). A median of 67% (range: 46-82) of T cells expressed the HER2 CAR, and exhibited a median 985.5 (range 390 to 1292) CMV.pp65 reactivity in an IFN-γ Elispot assay (SFC/105 T cells). Infusions of 1x106/m2-1x108/m2 were well tolerated without severe adverse events or cytokine release syndrome. HER2 CMV T cells were detected in the peripheral blood for up to 12 weeks post infusion, as judged by rtPCR of a CAR-specific amplicon. Out of 16 evaluable patients, 8 had progressive disease, 8/16 patients had objective responses: 1 patient had a partial response with a ~62% reduction in tumor volume lasting 8 months, 7 patients had stable disease for more than 6 weeks (of these 5 were durable >10 weeks) and 3 subjects are currently with a follow up 24 to >30 months, after T cell infusion. The median survival was 11.6 months from infusion and 24.8 months from diagnosis. The median survival for adults was 30 months from diagnosis. We conclude that systemically administered HER2 CAR CMV bispecific T cells are safe. A durable clinical benefit was observed in ~38% of patients.


Cancer Research | 2018

TEM8/ANTXR1-specific CAR T cells as a targeted therapy for triple-negative breast cancer

Tiara Byrd; Kristen Fousek; Antonella Pignata; Christopher S. Szot; Heba Samaha; Steven Seaman; Lacey E. Dobrolecki; Vita Salsman; Htoo Zarni Oo; Kevin Bielamowicz; Daniel Landi; Nino Rainusso; John Hicks; Suzanne Z. Powell; Matthew L. Baker; Winfried S. Wels; Joachim Koch; Poul H. Sorensen; Benjamin Deneen; Matthew J. Ellis; Michael T. Lewis; Meenakshi Hegde; Bradley S. Fletcher; Brad St. Croix; Nabil Ahmed

Triple-negative breast cancer (TNBC) is an aggressive disease lacking targeted therapy. In this study, we developed a CAR T cell-based immunotherapeutic strategy to target TEM8, a marker initially defined on endothelial cells in colon tumors that was discovered recently to be upregulated in TNBC. CAR T cells were developed that upon specific recognition of TEM8 secreted immunostimulatory cytokines and killed tumor endothelial cells as well as TEM8-positive TNBC cells. Notably, the TEM8 CAR T cells targeted breast cancer stem-like cells, offsetting the formation of mammospheres relative to nontransduced T cells. Adoptive transfer of TEM8 CAR T cells induced regression of established, localized patient-derived xenograft tumors, as well as lung metastatic TNBC cell line-derived xenograft tumors, by both killing TEM8+ TNBC tumor cells and targeting the tumor endothelium to block tumor neovascularization. Our findings offer a preclinical proof of concept for immunotherapeutic targeting of TEM8 as a strategy to treat TNBC.Significance: These findings offer a preclinical proof of concept for immunotherapeutic targeting of an endothelial antigen that is overexpressed in triple-negative breast cancer and the associated tumor vasculature. Cancer Res; 78(2); 489-500. ©2017 AACR.


Journal for ImmunoTherapy of Cancer | 2015

A bispecific chimeric antigen receptor molecule enhances T cell activation through dual immunological synapse formation and offsets antigen escape in glioblastoma

Meenakshi Hegde; Zakaria Grada; Antonella Pignata; Amanda Wakefield; Kristen Fousek; Kevin Bielamowicz; Kevin Chow; Vita S. Brawley; Tiara Byrd; Stephen Gottschalk; Malini Mukherjee; Winfried S. Wels; Matthew L. Baker; Giapietro Dotti; Jordan S. Orange; Nabil Ahmed

Meeting abstracts Antigen escape tumor cell variants prevail in tumors recurring after treatment with chimeric antigen receptor (CAR) T cells with a single specificity. Recurrent tumors preserve alternative non-targeted tumor associated antigens. A bispecific CAR will mitigate antigen escape

Collaboration


Dive into the Meenakshi Hegde's collaboration.

Top Co-Authors

Avatar

Nabil Ahmed

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Tiara Byrd

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Kristen Fousek

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Stephen Gottschalk

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Kevin Bielamowicz

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Antonella Pignata

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Helen E. Heslop

Center for Cell and Gene Therapy

View shared research outputs
Top Co-Authors

Avatar

Vita S. Brawley

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Amanda Wakefield

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Daniel Landi

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge