Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Meenakshi Malik is active.

Publication


Featured researches published by Meenakshi Malik.


Infection and Immunity | 2006

Toll-Like Receptor 2 Is Required for Control of Pulmonary Infection with Francisella tularensis

Meenakshi Malik; Chandra Shekhar Bakshi; Bikash Sahay; Aaloki Shah; Steven A. Lotz; Timothy J. Sellati

ABSTRACT Toll-like receptor 2 (TLR2) deficiency enhances murine susceptibility to infection by Francisella tularensis as indicated by accelerated mortality, higher bacterial burden, and greater histopathology. Analysis of pulmonary cytokine levels revealed that TLR2 deficiency results in significantly lower levels of tumor necrosis factor alpha and interleukin-6 but increased amounts of gamma interferon and monocyte chemoattractant protein 1. This pattern of cytokine production may contribute to the exaggerated pathogenesis seen in TLR2−/− mice. Collectively, these findings suggest that TLR2 plays an important role in tempering the host response to pneumonic tularemia.


The Journal of Infectious Diseases | 2007

Francisella tularensis Has a Significant Extracellular Phase in Infected Mice

Colin A. Forestal; Meenakshi Malik; Sally V. Catlett; Anne G. Savitt; Jorge L. Benach; Timothy J. Sellati; Martha B. Furie

The ability of Francisella tularensis to replicate in macrophages has led many investigators to assume that it resides primarily intracellularly in the blood of mammalian hosts. We have found this supposition to be untrue. In almost all cases, the majority of F. tularensis recovered from the blood of infected mice was in plasma rather than leukocytes. This distribution was observed irrespective of size of inoculum, route of inoculation, time after inoculation, or virulence of the infecting strain. Our findings yield new insight into the pathogenesis of tularemia and may have important ramifications in the search for anti-Francisella therapies.


Journal of Immunology | 2007

Matrix Metalloproteinase 9 Activity Enhances Host Susceptibility to Pulmonary Infection with Type A and B Strains of Francisella tularensis

Meenakshi Malik; Chandra Shekhar Bakshi; Kathleen McCabe; Sally V. Catlett; Aaloki Shah; Rajendra Singh; Patricia L. Jackson; Amit Gaggar; Dennis W. Metzger; J. Andres Melendez; J. Edwin Blalock; Timothy J. Sellati

A striking feature of pulmonary infection with the Gram-negative intracellular bacterium Francisella tularensis, a category A biological threat agent, is an intense accumulation of inflammatory cells, particularly neutrophils and macrophages, at sites of bacterial replication. Given the essential role played by host matrix metalloproteinases (MMPs) in modulating leukocyte recruitment and the potentially indiscriminate destructive capacity of these cells, we investigated whether MMP-9, an important member of this protease family released by neutrophils and activated macrophages, plays a role in the pathogenesis of respiratory tularemia. We found that F. tularensis induced expression of MMP-9 in FVB/NJ mice and that the action of this protease is associated with higher bacterial burdens in pulmonary and extrapulmonary tissues, development of more extensive histopathology predominated by neutrophils, and increased morbidity and mortality compared with mice lacking MMP-9 (MMP-9−/−). Moreover, MMP-9−/− mice were able to resolve infection with either the virulence-attenuated type B (live vaccine strain) or the highly virulent type A (SchuS4) strain of F. tularensis. Disease resolution was accompanied by diminished leukocyte recruitment and reductions in both bacterial burden and proinflammatory cytokine production. Notably, neutrophilic infiltrates were significantly reduced in MMP-9−/− mice, owing perhaps to limited release of Pro-Gly-Pro, a potent neutrophil chemotactic tripeptide released from extracellular matrix through the action of MMP-9. Collectively, these results suggest that MMP-9 activity plays a central role in modulating the clinical course and severity of respiratory tularemia and identifies MMPs as novel targets for therapeutic intervention as a means of modulating neutrophil recruitment.


Journal of Bacteriology | 2006

Superoxide Dismutase B Gene (sodB)-Deficient Mutants of Francisella tularensis Demonstrate Hypersensitivity to Oxidative Stress and Attenuated Virulence

Chandra Shekhar Bakshi; Meenakshi Malik; Kevin Regan; J. Andres Melendez; Dennis W. Metzger; Vitaly M. Pavlov; Timothy J. Sellati

A Francisella tularensis live vaccine strain mutant (sodB(Ft)) with reduced Fe-superoxide dismutase gene expression was generated and found to exhibit decreased sodB activity and increased sensitivity to redox cycling compounds compared to wild-type bacteria. The sodB(Ft) mutant also was significantly attenuated for virulence in mice. Thus, this study has identified sodB as an important F. tularensis virulence factor.


Infection and Immunity | 2008

Adaptation of Francisella tularensis to the Mammalian Environment Is Governed by Cues Which Can Be Mimicked In Vitro

Karsten R. O. Hazlett; Seth D. Caldon; Debbie G. McArthur; Kerry A. Cirillo; Girish S. Kirimanjeswara; Micheal L. Magguilli; Meenakshi Malik; Aaloki Shah; Scott R. Broderick; Igor Golovliov; Dennis W. Metzger; Krishna Rajan; Timothy J. Sellati; Daniel J. Loegering

ABSTRACT The intracellular bacterium Francisella tularensis survives in mammals, arthropods, and freshwater amoeba. It was previously established that the conventional media used for in vitro propagation of this microbe do not yield bacteria that mimic those harvested from infected mammals; whether these in vitro-cultivated bacteria resemble arthropod- or amoeba-adapted Francisella is unknown. As a foundation for our goal of identifying F. tularensis outer membrane proteins which are expressed during mammalian infection, we first sought to identify in vitro cultivation conditions that induce the bacteriums infection-derived phenotype. We compared Francisella LVS grown in brain heart infusion broth (BHI; a standard microbiological medium rarely used in Francisella research) to that grown in Mueller-Hinton broth (MHB; the most widely used F. tularensis medium, used here as a negative control) and macrophages (a natural host cell, used here as a positive control). BHI- and macrophage-grown F. tularensis cells showed similar expression of MglA-dependent and MglA-independent proteins; expression of the MglA-dependent proteins was repressed by the supraphysiological levels of free amino acids present in MHB. We observed that during macrophage infection, protein expression by intracellular bacteria differed from that by extracellular bacteria; BHI-grown bacteria mirrored the latter, while MHB-grown bacteria resembled neither. Naïve macrophages responding to BHI- and macrophage-grown bacteria produced markedly lower levels of proinflammatory mediators than those in cells exposed to MHB-grown bacteria. In contrast to MHB-grown bacteria, BHI-grown bacteria showed minimal delay during intracellular replication. Cumulatively, our findings provide compelling evidence that growth in BHI yields bacteria which recapitulate the phenotype of Francisella organisms that have emerged from macrophages.


Vaccine | 2008

An Improved Vaccine for Prevention of Respiratory Tularemia Caused by Francisella tularensis SchuS4 Strain

Chandra Shekhar Bakshi; Meenakshi Malik; Manish Mahawar; Girish S. Kirimanjeswara; Karsten R. O. Hazlett; Lance E. Palmer; Martha B. Furie; Rajendra Singh; J. Andres Melendez; Timothy J. Sellati; Dennis W. Metzger

Vaccination of mice with Francisella tularensis live vaccine strain (LVS) mutants described so far have failed to induce protection in C57BL/6 mice against challenge with the virulent strain F. tularensis SchuS4. We have previously reported that a mutant of F. tularensis LVS deficient in iron superoxide dismutase (sodB(Ft)) is hypersensitive to oxidative stress and attenuated for virulence in mice. Herein, we evaluated the efficacy of this mutant as a vaccine candidate against respiratory tularemia caused by F. tularensis SchuS4. C57BL/6 mice were vaccinated intranasally (i.n.) with the sodB(Ft) mutant and challenged i.n. with lethal doses of F. tularensis SchuS4. The level of protection against SchuS4 challenge was higher in sodB(Ft) vaccinated group as compared to the LVS vaccinated mice. sodB(Ft) vaccinated mice following SchuS4 challenge exhibited significantly reduced bacterial burden in lungs, liver and spleen, regulated production of pro-inflammatory cytokines and less severe histopathological lesions compared to the LVS vaccinated mice. The sodB(Ft) vaccination induced a potent humoral immune response and protection against SchuS4 required both CD4 and CD8 T cells in the vaccinated mice. sodB(Ft) mutants revealed upregulated levels of chaperonine proteins DnaK, GroEL and Bfr that have been shown to be important for generation of a potent immune response against Francisella infection. Collectively, this study describes an improved live vaccine candidate against respiratory tularemia that has an attenuated virulence and enhanced protective efficacy than the LVS.


Journal of Bacteriology | 2009

Identification of Francisella tularensis Live Vaccine Strain CuZn Superoxide Dismutase as Critical for Resistance to Extracellularly Generated Reactive Oxygen Species

Amanda Melillo; Manish Mahawar; Timothy J. Sellati; Meenakshi Malik; Dennis W. Metzger; J. Andres Melendez; Chandra Shekhar Bakshi

Francisella tularensis is an intracellular pathogen whose survival is in part dependent on its ability to resist the microbicidal activity of host-generated reactive oxygen species (ROS) and reactive nitrogen species (RNS). In numerous bacterial pathogens, CuZn-containing superoxide dismutases (SodC) are important virulence factors, localizing to the periplasm to offer protection from host-derived superoxide radicals (O(2)(-)). In the present study, mutants of F. tularensis live vaccine strain (LVS) deficient in superoxide dismutases (SODs) were used to examine their role in defense against ROS/RNS-mediated microbicidal activity of infected macrophages. An in-frame deletion F. tularensis mutant of sodC (DeltasodC) and a F. tularensis DeltasodC mutant with attenuated Fe-superoxide dismutase (sodB) gene expression (sodB DeltasodC) were constructed and evaluated for susceptibility to ROS and RNS in gamma interferon (IFN-gamma)-activated macrophages and a mouse model of respiratory tularemia. The F. tularensis DeltasodC and sodB DeltasodC mutants showed attenuated intramacrophage survival in IFN-gamma-activated macrophages compared to the wild-type F. tularensis LVS. Transcomplementing the sodC gene in the DeltasodC mutant or inhibiting the IFN-gamma-dependent production of O(2)(-) or nitric oxide (NO) enhanced intramacrophage survival of the sod mutants. The DeltasodC and sodB DeltasodC mutants were also significantly attenuated for virulence in intranasally challenged C57BL/6 mice compared to the wild-type F. tularensis LVS. As observed for macrophages, the virulence of the DeltasodC mutant was restored in ifn-gamma(-/-), inos(-/-), and phox(-/-) mice, indicating that SodC is required for resisting host-generated ROS. To conclude, this study demonstrates that SodB and SodC act to confer protection against host-derived oxidants and contribute to intramacrophage survival and virulence of F. tularensis in mice.


Journal of Biological Chemistry | 2013

Repression of inflammasome by Francisella tularensis during early stages of infection.

Rachel J. Dotson; Seham M. Rabadi; Elizabeth L. Westcott; Stephen Bradley; Sally V. Catlett; Sukalyani Banik; Jonathan A. Harton; Chandra Shekhar Bakshi; Meenakshi Malik

Background: The mechanism of repression of inflammasome caused by Francisella tularensis is not known. Results: F. tularensis represses AIM2 and NLRP3 inflammasomes in a FTL_0325-dependent fashion. Conclusion: Repression of inflammasome by F. tularensis results in fulminate infection. Significance: This study advances the understanding of mechanisms of immune suppression caused by F. tularensis. Francisella tularensis is an important human pathogen responsible for causing tularemia. F. tularensis has long been developed as a biological weapon and is now classified as a category A agent by the Centers for Disease Control because of its possible use as a bioterror agent. F. tularensis represses inflammasome; a cytosolic multi-protein complex that activates caspase-1 to produce proinflammatory cytokines IL-1β and IL-18. However, the Francisella factors and the mechanisms through which F. tularensis mediates these suppressive effects remain relatively unknown. Utilizing a mutant of F. tularensis in FTL_0325 gene, this study investigated the mechanisms of inflammasome repression by F. tularensis. We demonstrate that muted IL-1β and IL-18 responses generated in macrophages infected with F. tularensis live vaccine strain (LVS) or the virulent SchuS4 strain are due to a predominant suppressive effect on TLR2-dependent signal 1. Our results also demonstrate that FTL_0325 of F. tularensis impacts proIL-1β expression as early as 2 h post-infection and delays activation of AIM2 and NLRP3-inflammasomes in a TLR2-dependent fashion. An enhanced activation of caspase-1 and IL-1β observed in FTL_0325 mutant-infected macrophages at 24 h post-infection was independent of both AIM2 and NLRP3. Furthermore, F. tularensis LVS delayed pyroptotic cell death of the infected macrophages in an FTL_0325-dependent manner during the early stages of infection. In vivo studies in mice revealed that suppression of IL-1β by FTL_0325 early during infection facilitates the establishment of a fulminate infection by F. tularensis. Collectively, this study provides evidence that F. tularensis LVS represses inflammasome activation and that F. tularensis-encoded FTL_0325 mediates this effect.


Journal of Biological Chemistry | 2011

Francisella tularensis reveals a disparity between human and mouse NLRP3 inflammasome activation

Maninjay K. Atianand; Ellen B. Duffy; Aaloki Shah; Supriya Kar; Meenakshi Malik; Jonathan A. Harton

Pathogen-triggered activation of the inflammasome complex leading to caspase-1 activation and IL-1β production involves similar sensor proteins between mouse and human. However, the specific sensors used may differ between infectious agents and host species. In mice, Francisella infection leads to seemingly exclusive activation of the Aim2 inflammasome with no apparent role for Nlrp3. Here we examine the IL-1β response of human cells to Francisella infection. Francisella strains exhibit differences in IL-1β production by influencing induction of IL-1β and ASC transcripts. Unexpectedly, our results demonstrate that Francisella activates the NLRP3 inflammasome in human cells. Francisella infection of THP-1 cells elicits IL-1β production, which is reduced by siRNA targeting of NLRP3. Moreover, in reconstituted 293T cells, Francisella triggers assembly of the NLRP3 inflammasome complex. In addition, inhibitors of reactive oxygen species, cathepsin B, and K+ efflux pathways, known to specifically influence NLRP3, substantially but not completely impair the Francisella-elicited IL-1β response, suggesting the involvement of another inflammasome pathway. Finally, shRNA targeting of NLRP3 and AIM2 reveals that both pathways contribute to the inflammasome response. Together these results establish NLRP3 as a cytosolic sensor for Francisella in human cells, a role not observed in mouse.


Journal of Biological Chemistry | 2012

Identification of a Novel Francisella tularensis Factor Required for Intramacrophage Survival and Subversion of Innate Immune Response

Manish Mahawar; Maninjay K. Atianand; Rachel J. Dotson; Vanessa Mora; Seham M. Rabadi; Dennis W. Metzger; Jason F. Huntley; Jonathan A. Harton; Meenakshi Malik; Chandra Shekhar Bakshi

Background: The mechanism of immune suppression caused by Francisella tularensis SchuS4 strain, a category A agent, are yet unknown. Results: FTL_0325/FTT0831c genes of F. tularensis suppress proinflammatory cytokines by preventing activation of NF-κB signaling. Conclusion: FTL_0325/FTT0831c of Francisella is a key virulence factor and functions as an immunosuppressant. Significance: Understanding of such pathogenic mechanisms will define vaccine candidates to prevent tularemia acquired naturally or through an act of bioterrorism. Francisella tularensis, the causative agent of tularemia, is one of the deadliest agents of biological warfare and bioterrorism. Extremely high virulence of this bacterium is associated with its ability to dampen or subvert host innate immune response. The objectives of this study were to identify factors and understand the mechanisms of host innate immune evasion by F. tularensis. We identified and explored the pathogenic role of a mutant interrupted at gene locus FTL_0325, which encodes an OmpA-like protein. Our results establish a pathogenic role of FTL_0325 and its ortholog FTT0831c in the virulent F. tularensis SchuS4 strain in intramacrophage survival and suppression of proinflammatory cytokine responses. This study provides mechanistic evidence that the suppressive effects on innate immune responses are due specifically to these proteins and that FTL_0325 and FTT0831c mediate immune subversion by interfering with NF-κB signaling. Furthermore, FTT0831c inhibits NF-κB activity primarily by preventing the nuclear translocation of p65 subunit. Collectively, this study reports a novel F. tularensis factor that is required for innate immune subversion caused by this deadly bacterium.

Collaboration


Dive into the Meenakshi Malik's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhuo Ma

Albany College of Pharmacy and Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Aaloki Shah

Albany Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Andres Melendez

State University of New York System

View shared research outputs
Researchain Logo
Decentralizing Knowledge