Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Meenu Jain is active.

Publication


Featured researches published by Meenu Jain.


The Journal of Clinical Endocrinology and Metabolism | 2014

Integrated analysis of genome-wide methylation and gene expression shows epigenetic regulation of CYP11B2 in aldosteronomas.

Brandi Howard; Yonghong Wang; Paraskevi Xekouki; Fabio R. Faucz; Meenu Jain; Lisa Zhang; Paul G. Meltzer; Constantine A. Stratakis; Electron Kebebew

CONTEXT Differential methylation of CpG regions is the best-defined mechanism of epigenetic regulation of gene expression. OBJECTIVE Our objective was to determine whether any changes in methylation are associated with aldosteronomas. METHODS We performed integrated genome-wide methylation and gene expression profiling in aldosteronomas (n = 25) as compared with normal adrenal cortical tissue (n = 10) and nonfunctioning adrenocortical tumors (n = 13). To determine the effect of demethylation on gene expression of CYP11B2, the H295R cell line was used. RESULTS The methylome of aldosteronomas, normal adrenal cortex, and nonfunctioning adrenocortical tumors was distinct, with hypomethylation of aldosteronomas. Integrated analysis of gene expression and methylation status showed that 53 of 60 genes were hypermethylated and downregulated, or hypomethylated and upregulated, in aldosteronomas. Of these, 3 genes that regulate steroidogenic signals and synthesis in adrenocortical cells were differentially methylated: AVPR1α and PRKCA were downregulated and hypermethylated, and CYP11B2 was upregulated and hypomethylated. Demethylation treatment resulted in upregulation of these genes, with direct hypomethylation of CpG sites associated with the genes. The CpG island in the promoter region of CYP11B2 was hypomethylated in aldosteronomas but not in blood DNA from the same patients (P = .0004). CONCLUSIONS Altered methylation in aldosteronomas is associated with dysregulated expression of genes involved in steroid biosynthesis. Aldosteronomas are hypomethylated, and CYP11B2 is overexpressed and hypomethylated in these tumors.


Endocrine-related Cancer | 2013

TOP2A is overexpressed and is a therapeutic target for adrenocortical carcinoma

Meenu Jain; Lisa Zhang; Mei He; Yaqin Zhang; Min Shen; Electron Kebebew

Adrenocortical carcinoma (ACC) is a rare but aggressive malignancy with no effective therapy for patients with unresectable disease. The aim of the current study was i) to evaluate TOP2A expression and function in human adrenocortical neoplasm and ACC cells and ii) to determine the anticancer activity of agents that target TOP2A. TOP2A mRNA and protein expression levels were evaluated in 112 adrenocortical tissue samples (21 normal adrenal cortex, 80 benign adrenocortical tumors, and 11 ACCs). In vitro siRNA knockdown of TOP2A in ACC cell lines (NCI-H295R and SW13) was used to determine its effect on cellular proliferation, cell cycle, anchorage-independent growth, and cellular invasion. We screened 14 TOP2A inhibitors for their anticancer activity in ACC cells. TOP2A mRNA and protein expression was significantly higher in ACC than in benign and normal adrenocortical tissue samples (P<0.05). Knockdown of TOP2A gene expression in ACC cell lines significantly decreased cell proliferation, anchorage-independent growth, and invasion (P<0.05). A screening assay in NCI-H295R cells showed that 11 of 14 TOP2A inhibitors had antiproliferative activity, 5 of the 14 TOP2A inhibitors had a higher antiproliferative activity than mitotane, and aclarubicin was the agent with the highest activity. Aclarubicin was validated to significantly decrease proliferation and tumor spheroid size in both NCI-H295R and SW13 ACC cell lines (P<0.05). Our results suggest that TOP2A is overexpressed in ACC, regulates cellular proliferation and invasion in ACC cells, and is an attractive target for ACC therapy. Of the TOP2A inhibitors screened, aclarubicin is a good candidate agent to test in future clinical trials for patients with locally advanced and metastatic ACC.


Histology and Histopathology | 2017

Vascular mimicry in glioblastoma following anti-angiogenic and anti-20-HETE therapies

Kartik Angara; Mohammad H. Rashid; Adarsh Shankar; Roxan Ara; Asm Iskander; Thaiz F. Borin; Meenu Jain; Bhagelu R. Achyut; Ali S. Arbab

Glioblastoma (GBM) is one hypervascular and hypoxic tumor known among solid tumors. Antiangiogenic therapeutics (AATs) have been tested as an adjuvant to normalize blood vessels and control abnormal vasculature. Evidence of relapse exemplified in the progressive tumor growth following AAT reflects development of resistance to AATs. Here, we identified that GBM following AAT (Vatalanib) acquired an alternate mechanism to support tumor growth, called vascular mimicry (VM). We observed that Vatalanib induced VM vessels are positive for periodic acid-Schiff (PAS) matrix but devoid of any endothelium on the inner side and lined by tumor cells on the outer-side. The PAS+ matrix is positive for basal laminae (laminin) indicating vascular structures. Vatalanib treated GBM displayed various stages of VM such as initiation (mosaic), sustenance, and full-blown VM. Mature VM structures contain red blood cells (RBC) and bear semblance to the functional blood vessel-like structures, which provide all growth factors to favor tumor growth. Vatalanib treatment significantly increased VM especially in the core of the tumor, where HIF-1α was highly expressed in tumor cells. VM vessels correlate with hypoxia and are characterized by co-localized MHC-1+ tumor and HIF-1α expression. Interestingly, 20-HETE synthesis inhibitor HET0016 significantly decreased GBM tumors through decreasing VM structures both at the core and at periphery of the tumors. In summary, AAT induced resistance characterized by VM is an alternative mechanism adopted by tumors to make functional vessels by transdifferentiation of tumor cells into endothelial-like cells to supply nutrients in the event of hypoxia. AAT induced VM is a potential therapeutic target of the novel formulation of HET0016. Our present study suggests that HET0016 has a potential to target therapeutic resistance and can be combined with other antitumor agents in preclinical and clinical trials.


Pesticide Biochemistry and Physiology | 2014

When Seed and Soil Theory Meets Chicken or Egg Theory in Cancer Metastasis.

Meenu Jain; Ali S. Arbab; Bhagelu R. Achyut

Cancer metastasis has been a serious problem since decades. Seed and soil hypothesis of metastasis remains true and all the metastatic tumors follow this nature’s law [1,2]. Advance metastasis or multi-organ metastasis is difficult to treat due to multi-organ dysfunction. One of the major issues in metastasis is that diagnosis occurs at the advanced stages. Secondly, we have not understood the complete mechanisms so well so far due to intricate nature of metastasis. In metastasis, seed (tumor cell) migrates to the soil (distant organs, e.g. lung, liver, brain, and bone). Several experimental studies have been done that suggested the role of bone marrow derived progenitor cells [3] (e.g. CD11b+ [4] and VEGFR1+ [5] cells) in the initiation of metastasis. Several chemokines, such as SDF-1, TNF-α, TGF-β and VEGF-A influence the recruitment of different cell types to pre-metastatic sites resulting into increased expression of specific molecules in the niche like S100A8, S100A9, lysyl oxidase (LOX), fibronectin, MMP9 and MMP2 in the initiation of premetastatic niche [6,7], which are bonafide candidates of therapeutic targeting [8]. In addition, tumor induced hypoxia has been shown to promote the premetastatic niche formation by recruiting CD11b+/Ly6Cmed/Ly6G+ cells [9] and producing LOX [10]. Recently, much attention has been given to the tumor-derived exosomes or micro vesicles that carry almost every essential cellular macromolecule and has signals to polarize cells in the tumor microenvironment and create premetastatic niche in the distant organs, before the seed (tumor cell) arrives [11,12]. Exosomes derived from melanomas were shown to educate pro-metastatic progenitor cells in the bone marrow [13]. Renal-carcinoma-derived exosomes were found to promote angiogenesis in lung tumor metastases [14]. In addition, using murine mammary carcinoma demonstrated that, tumor-derived microvesicles use osteopontin to mobilize pro-angiogenic cells from the bone marrow [15]. Surprisingly, exosomes perform cell independent miRNA biogenesis to promote tumorigenesis and metastasis [16]. Firstly, tumor derived exosomes has pro-angiogenic functions that helps tumor in building required vasculature for tumor growth. For example, Yoon et al. [17] investigated pro-angiogenic role of tumor-secreted exosomes by showing Egr-1 activation in endothelial cells through ERK1/2 and JNK signaling pathways and endothelial cell migration, which was facilitated by the tumor cell derived extracellular vesicles. On the other hand, tumor derived exosomes involved in the destruction of vasculature integrity for metastasis. For example, miR-105, which is characteristically expressed and secreted by metastatic breast cancer cells, is reported as a potent regulator of tumor cell migration through targeting the tight junction protein ZO-1 via exosomes. Tumor cell secreted exosomes deliver miR-105 to the site of endothelial monolayers that efficiently destroys tight junctions and hence the integrity of barriers against metastasis [18]. Although exosomes have attracted much attention and are considered as a bonafide targets for cancer therapy, their roles in tumor metastasis is poorly investigated. In addition, technologies and methods to study exosomes are growing day by day. It is possible that tumor cell exosomes are delivered to the distant organs that manipulates host environment before any immune cells or chemokine. However, what initiates tumor cell migration to the distant organs, remains unclear, i.e. chicken comes first or egg and warrants further investigations.


Scientific Reports | 2017

Intravenous Formulation of HET0016 Decreased Human Glioblastoma Growth and Implicated Survival Benefit in Rat Xenograft Models

Meenu Jain; Nipuni Dhanesha H Gamage; Meshal Alsulami; Adarsh Shankar; Bhagelu R. Achyut; Kartik Angara; Mohammad H. Rashid; Asm Iskander; Thaiz F. Borin; Zhi Wenbo; Roxan Ara; Meser M. Ali; Iryna Lebedyeva; Wilson B. Chwang; Austin M. Guo; Hassan Bagher-Ebadian; Ali S. Arbab

Glioblastoma (GBM) is a hypervascular primary brain tumor with poor prognosis. HET0016 is a selective CYP450 inhibitor, which has been shown to inhibit angiogenesis and tumor growth. Therefore, to explore novel treatments, we have generated an improved intravenous (IV) formulation of HET0016 with HPßCD and tested in animal models of human and syngeneic GBM. Administration of a single IV dose resulted in 7-fold higher levels of HET0016 in plasma and 3.6-fold higher levels in tumor at 60 min than that in IP route. IV treatment with HPßCD-HET0016 decreased tumor growth, and altered vascular kinetics in early and late treatment groups (p < 0.05). Similar growth inhibition was observed in syngeneic GL261 GBM (p < 0.05). Survival studies using patient derived xenografts of GBM811, showed prolonged survival to 26 weeks in animals treated with focal radiation, in combination with HET0016 and TMZ (p < 0.05). We observed reduced expression of markers of cell proliferation (Ki-67), decreased neovascularization (laminin and αSMA), in addition to inflammation and angiogenesis markers in the treatment group (p < 0.05). Our results indicate that HPßCD-HET0016 is effective in inhibiting tumor growth through decreasing proliferation, and neovascularization. Furthermore, HPßCD-HET0016 significantly prolonged survival in PDX GBM811 model.


Scientific Reports | 2017

Canonical NFκB signaling in myeloid cells is required for the glioblastoma growth

Bhagelu R. Achyut; Kartik Angara; Meenu Jain; Thaiz F. Borin; Mohammad H. Rashid; Asm Iskander; Roxan Ara; Ravindra Kolhe; Shelby Howard; Natasha Venugopal; Paulo C. Rodriguez; Jennifer W. Bradford; Ali S. Arbab

Tumor development and therapeutic resistance are linked with tumor-associated macrophage (TAM) and myeloid-derived suppressor cell (MDSC) infiltration in tumors via chemokine axis. Chemokine expression, which determines the pro or anti-inflammatory status of myeloid cells, are partly regulated by the nuclear factor-kappa B (NF-κB) pathway. Here, we identified that conditional deletion of canonical NF-κB signaling (p65) in myeloid cells inhibited syngeneic glioblastoma (GBM) through decreased CD45 infiltration in tumors, as characterized by decreased TAMs (CD206+) and MDSCs (Gr1+ CD11b+), increased dendritic cells (CD86+) and cytotoxic T cells (CD8+) in the p65 knockout (KO) mice. Proinflammatory cytokines (IFNγ, MCP1, MIP1α, and TNFα) and myeloid differentiation factor (Endoglin) were increased in myeloid cells from p65 KO tumor, which demonstrated an influence on CD8+T cell proliferation. In contrast, p65KO athymic chimeric mice with human GBM, failed to inhibit tumor growth, confirming the contribution of T cells in an immune competent model. The analysis of human datasets and GBM tumors revealed higher expression of p65 in GBM-associated CD68+ macrophages compared to neighboring stroma. Thus, canonical NF-κB signaling has an anti-inflammatory role and is required for macrophage polarization, immune suppression, and GBM growth. Combining an NF-κB inhibitor with standard therapy could improve antitumor immunity in GBM.


OncoTargets and Therapy | 2016

Combination of vatalanib and a 20-HETE synthesis inhibitor results in decreased tumor growth in an animal model of human glioma

Adarsh Shankar; Thaiz F. Borin; Asm Iskander; Nadimpalli Ravi S. Varma; Bhagelu R. Achyut; Meenu Jain; Tom Mikkelsen; Austin M. Guo; Wilson B. Chwang; James R. Ewing; Hassan Bagher-Ebadian; Ali S. Arbab

Background Due to the hypervascular nature of glioblastoma (GBM), antiangiogenic treatments, such as vatalanib, have been added as an adjuvant to control angiogenesis and tumor growth. However, evidence of progressive tumor growth and resistance to antiangiogenic treatment has been observed. To counter the unwanted effect of vatalanib on GBM growth, we have added a new agent known as N-hydroxy-N′-(4-butyl-2 methylphenyl)formamidine (HET0016), which is a selective inhibitor of 20-hydroxyeicosatetraenoic acid (20-HETE) synthesis. The aims of the studies were to determine 1) whether the addition of HET0016 can attenuate the unwanted effect of vatalanib on tumor growth and 2) whether the treatment schedule would have a crucial impact on controlling GBM. Methods U251 human glioma cells (4×105) were implanted orthotopically. Two different treatment schedules were investigated. Treatment starting on day 8 (8–21 days treatment) of the tumor implantation was to mimic treatment following detection of tumor, where tumor would have hypoxic microenvironment and well-developed neovascularization. Drug treatment starting on the same day of tumor implantation (0–21 days treatment) was to mimic cases following radiation therapy or surgery. There were four different treatment groups: vehicle, vatalanib (oral treatment 50 mg/kg/d), HET0016 (intraperitoneal treatment 10 mg/kg/d), and combined (vatalanib and HET0016). Following scheduled treatments, all animals underwent magnetic resonance imaging on day 22, followed by euthanasia. Brain specimens were equally divided for immunohistochemistry and protein array analysis. Results Our results demonstrated a trend that HET0016, alone or in combination with vatalanib, is capable of controlling the tumor growth compared with that of vatalanib alone, indicating attenuation of the unwanted effect of vatalanib. When both vatalanib and HET0016 were administered together on the day of the tumor implantation (0–21 days treatment), tumor volume, tumor blood volume, permeability, extravascular and extracellular space volume, tumor cell proliferation, and cell migration were decreased compared with that of the vehicle-treated group. Conclusion HET0016 is capable of controlling tumor growth and migration, but these effects are dependent on the timing of drug administration. The addition of HET0016 to vatalanib may attenuate the unwanted effect of vatalanib.


PLOS ONE | 2017

HET0016 decreases lung metastasis from breast cancer in immune-competent mouse model

Thaiz F. Borin; Adarsh Shankar; Kartik Angara; Mohammad H. Rashid; Meenu Jain; Asm Iskander; Roxan Ara; Iryna Lebedyeva; Hasan Korkaya; Bhagelu R. Achyut; Ali S. Arbab

Distant metastasis is the primary cause of death in the majority of the cancer types. Recently, much importance has been given to tumor microenvironment (TME) in the development of invasive malignant tumors, as well as the metastasis potential. The ability of tumor cells to modulate TME and to escape immune-mediated attack by releasing immunosuppressive cytokines has become a hallmark of breast cancer. Our study shows the effect of IV formulation of HET0016 (HPßCD-HET0016) a selective inhibitor of 20-HETE synthesis, administered intravenously in immune-competent in vivo mouse model of murine breast cancer. 4T1 luciferase positive cells were implanted to the mammary fat pad in Balb/c mice. Treatment started on day 15, and was administered for 5 days a week for 3 weeks. The development of metastasis was detected via optical imaging. Blood, spleen, lungs, bone marrow and tumor were collected for flow cytometry, to investigate changes in myeloid-derived suppressive cells (MDSCs) populations and endothelial phenotype. Tumor and lungs were collected for protein analysis. Our results show that HPßCD-HET0016: (1) decreased tumor volume and lung metastasis compared to the vehicle group; (2) reduced migration and invasion of tumor cells and levels of metalloproteinases in the lungs of animals treated with HPßCD-HET0016 via PI3K/AKT pathway; and (3) decreased expression of pro-inflammatory cytokines, growth factors and granulocytic MDSCs population in the lung microenvironment in treated animals. Thus, HPßCD-HET0016 showed potential in treating lung metastasis in a preclinical mouse model and needs further investigations on TME.


International Journal of Molecular Sciences | 2017

Major challenges and potential microenvironment-targeted therapies in glioblastoma

Ali S. Arbab; Mohammad H. Rashid; Kartik Angara; Thaiz F. Borin; Ping Chang Lin; Meenu Jain; Bhagelu R. Achyut

Glioblastoma (GBM) is considered one of the most malignant, genetically heterogeneous, and therapy-resistant solid tumor. Therapeutic options are limited in GBM and involve surgical resection followed by chemotherapy and/or radiotherapy. Adjuvant therapies, including antiangiogenic treatments (AATs) targeting the VEGF–VEGFR pathway, have witnessed enhanced infiltration of bone marrow-derived myeloid cells, causing therapy resistance and tumor relapse in clinics and in preclinical models of GBM. This review article is focused on gathering previous clinical and preclinical reports featuring major challenges and lessons in GBM. Potential combination therapies targeting the tumor microenvironment (TME) to overcome the myeloid cell-mediated resistance problem in GBM are discussed. Future directions are focused on the use of TME-directed therapies in combination with standard therapy in clinical trials, and the exploration of novel therapies and GBM models for preclinical studies. We believe this review will guide the future of GBM research and therapy.


Pesticide Biochemistry and Physiology | 2015

Vascular Mimicry: The Next Big Glioblastoma Target.

Ali S. Arbab; Meenu Jain; Bhagelu R. Achyut

Glioblastoma (GBM), a grade IV glioma classified by World Health Organization (WHO), is considered highly malignant, vascular and invasive subtype [1]. GBM is most lethal during first year after initial diagnosis despite surgical resection, radiotherapy and/or chemotherapy [1,2]. Median survival of patients diagnosed with GBM is only 12 to 15 months [1,2]. Anti-angiogenic therapies (AAT) were used as an adjuvant mainly against vascular endothelial growth factor and its receptors (VEGF-VEGFRs) to normalize tumor vasculatures in GBM patients. However, all of them provided minimal to none effect with no change in overall survival [3]. Hypoxia and neovascularization are histopathologic features of GBM [4]. Hypoxia activated proangiogenic, invasion and metastasis associated gene signatures, enabling tumor to become more angiogenic, invasive and malignant in a compromised microenvironment [5,6]. GBM tumor vessels are tortuous, disorganized, highly permeable, and have abnormal endothelial cells (ECs), pericyte coverage, and basement membrane structure [7,8]. Conventionally, tumor vessel formation occurs through angiogenesis, which is mediated by proliferation and migration of resident ECs [9]. Instead, vasculogenesis originates from circulating bone marrow derived cells (BMDCs) or endothelial progenitor cells (EPCs), which express VEGFR2, are recruited by VEGF followed by differentiation and incorporation into new tumor blood vessels [10].

Collaboration


Dive into the Meenu Jain's collaboration.

Top Co-Authors

Avatar

Ali S. Arbab

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Bhagelu R. Achyut

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Kartik Angara

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Asm Iskander

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Roxan Ara

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Thaiz F. Borin

Faculdade de Medicina de São José do Rio Preto

View shared research outputs
Top Co-Authors

Avatar

Adarsh Shankar

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisa Zhang

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge