Meetu Seth
University of Massachusetts Medical School
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Meetu Seth.
Genetics | 2014
Heesun Kim; Takao Ishidate; Krishna S. Ghanta; Meetu Seth; Darryl Conte; Masaki Shirayama; Craig C. Mello
Genome editing based on CRISPR (clustered regularly interspaced short palindromic repeats)-associated nuclease (Cas9) has been successfully applied in dozens of diverse plant and animal species, including the nematode Caenorhabditis elegans. The rapid life cycle and easy access to the ovary by micro-injection make C. elegans an ideal organism both for applying CRISPR-Cas9 genome editing technology and for optimizing genome-editing protocols. Here we report efficient and straightforward CRISPR-Cas9 genome-editing methods for C. elegans, including a Co-CRISPR strategy that facilitates detection of genome-editing events. We describe methods for detecting homologous recombination (HR) events, including direct screening methods as well as new selection/counterselection strategies. Our findings reveal a surprisingly high frequency of HR-mediated gene conversion, making it possible to rapidly and precisely edit the C. elegans genome both with and without the use of co-inserted marker genes.
PLOS ONE | 2009
Meetu Seth; Elise A. Lamont; Harish K. Janagama; Andrea Widdel; Lucy Vulchanova; Judith R. Stabel; W. Ray Waters; Mitchell V. Palmer; Srinand Sreevatsan
Background Bovine tuberculosis is a highly prevalent infectious disease of cattle worldwide; however, infection in the United States is limited to 0.01% of dairy herds. Thus detection of bovine TB is confounded by high background infection with M. avium subsp. paratuberculosis. The present study addresses variations in the circulating peptidome based on the pathogenesis of two biologically similar mycobacterial diseases of cattle. Methodology/Principal Findings We hypothesized that serum proteomes of animals in response to either M. bovis or M. paratuberculosis infection will display several commonalities and differences. Sera prospectively collected from animals experimentally infected with either M. bovis or M. paratuberculosis were analyzed using high-resolution proteomics approaches. iTRAQ, a liquid chromatography and tandem mass spectrometry approach, was used to simultaneously identify and quantify peptides from multiple infections and contemporaneous uninfected control groups. Four comparisons were performed: 1) M. bovis infection versus uninfected controls, 2) M. bovis versus M. paratuberculosis infection, 3) early, and 4) advanced M. paratuberculosis infection versus uninfected controls. One hundred and ten differentially elevated proteins (P≤0.05) were identified. Vitamin D binding protein precursor (DBP), alpha-1 acid glycoprotein, alpha-1B glycoprotein, fetuin, and serine proteinase inhibitor were identified in both infections. Transthyretin, retinol binding proteins, and cathelicidin were identified exclusively in M. paratuberculosis infection, while the serum levels of alpha-1-microglobulin/bikunin precursor (AMBP) protein, alpha-1 acid glycoprotein, fetuin, and alpha-1B glycoprotein were elevated exclusively in M. bovis infected animals. Conclusions/Significance The discovery of these biomarkers has significant impact on the elucidation of pathogenesis of two mycobacterial diseases at the cellular and the molecular level and can be applied in the development of mycobacterium-specific diagnostic tools for the monitoring progression of disease, response to therapy, and/or vaccine based interventions.
Journal of Clinical Microbiology | 2014
Elise A. Lamont; Harish K. Janagama; João Ribeiro-Lima; Lucy Vulchanova; Meetu Seth; My Yang; Kiran Kurmi; W. Ray Waters; Tyler C. Thacker; Srinand Sreevatsan
ABSTRACT Bovine tuberculosis remains one of the most damaging diseases to agriculture, and there is also a concern for human spillover. A critical need exists for rapid, thorough, and inexpensive diagnostic methods capable of detecting and differentiating Mycobacterium bovis infection from other pathogenic and environmental mycobacteria at multiple surveillance levels. In a previous study, Seth et al. (PLoS One 4:e5478, 2009, doi:10.1371/journal.pone.0005478) identified 32 host peptides that specifically increased in the blood serum of M. bovis-infected animals). In the current study, 16 M. bovis proteins were discovered in the blood serum proteomics data sets. A large-scale validation analysis was undertaken for selected host and M. bovis proteins using a cattle serum repository containing M. bovis (n = 128), Mycobacterium kansasii (n = 10), and Mycobacterium avium subsp. paratuberculosis (n = 10), cases exposed to M. bovis (n = 424), and negative controls (n = 38). Of the host biomarkers, vitamin D binding protein (VDBP) showed the greatest sensitivity and specificity for M. bovis detection. Circulating M. bovis proteins, specifically polyketide synthetase 5, detected M. bovis-infected cattle with little to no seroreactivity against M. kansasii- and M. avium subsp. paratuberculosis-infected animals. These data indicate that host and pathogen serum proteins can serve as reliable biomarkers for tracking M. bovis infection in animal populations.
Current Biology | 2014
Masaki Shirayama; William Stanney; Weifeng Gu; Meetu Seth; Craig C. Mello
Argonaute (AGO) proteins are key nuclease effectors of RNAi. Although purified AGOs can mediate a single round of target RNA cleavage in vitro, accessory factors are required for small interfering RNA (siRNA) loading and to achieve multiple-target turnover. To identify AGO cofactors, we immunoprecipitated the C. elegans AGO WAGO-1, which engages amplified small RNAs during RNAi. These studies identified a robust association between WAGO-1 and a conserved Vasa ATPase-related protein RDE-12. rde-12 mutants are deficient in RNAi, including viral suppression, and fail to produce amplified secondary siRNAs and certain endogenous siRNAs (endo-siRNAs). RDE-12 colocalizes with WAGO-1 in germline P granules and in cytoplasmic and perinuclear foci in somatic cells. These findings and our genetic studies suggest that RDE-12 is first recruited to target mRNA by upstream AGOs (RDE-1 and ERGO-1), where it promotes small RNA amplification and/or WAGO-1 loading. Downstream of these events, RDE-12 forms an RNase-resistant (target mRNA-independent) complex with WAGO-1 and may thus have additional functions in target mRNA surveillance and silencing.
Cell Reports | 2018
Meetu Seth; Masaki Shirayama; Wen Tang; En-zhi Shen; Shikui Tu; Heng-Chi Lee; Zhiping Weng; Craig C. Mello
SUMMARY Protein-coding genes undergo a wide array of regulatory interactions with factors that engage non-coding regions. Open reading frames (ORFs), in contrast, are thought to be constrained by coding function, precluding a major role in gene regulation. Here, we explore Piwi-interacting (pi)RNA-mediated transgene silencing in C. elegans and show that marked differences in the sensitivity to piRNA silencing map to the endogenous sequences within transgene ORFs. Artificially increasing piRNA targeting within the ORF of a resistant transgene can lead to a partial yet stable reduction in expression, revealing that piRNAs not only silence but can also “tune” gene expression. Our findings support a model that involves a temporal element to mRNA regulation by germline Argonautes, likely prior to translation, and suggest that piRNAs afford incremental control of germline mRNA expression by targeting the body of the mRNA, including the coding region.
Cell | 2012
Masaki Shirayama; Meetu Seth; Heng-Chi Lee; Weifeng Gu; Takao Ishidate; Darryl Conte; Craig C. Mello
Developmental Cell | 2013
Meetu Seth; Masaki Shirayama; Weifeng Gu; Takao Ishidate; Darryl Conte; Craig C. Mello
Developmental Cell | 2018
Wen Tang; Meetu Seth; Shikui Tu; En-zhi Shen; Qian Li; Masaki Shirayama; Zhiping Weng; Craig C. Mello
Molecular Cell | 2018
Takao Ishidate; Ahmet R. Ozturk; Daniel J. Durning; Rita Sharma; En-zhi Shen; Hao Chen; Meetu Seth; Masaki Shirayama; Craig C. Mello
Archive | 2018
Takao Ishidate; Daniel J. Durning; Rita Sharma; En-zhi Shen; Hao Chen; Ahmet R. Ozturk; Meetu Seth; Masaki Shirayama; Craig C. Mello