Megan Bergkessel
University of California, San Francisco
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Megan Bergkessel.
Molecular Cell | 2008
Gwendolyn M. Wilmes; Megan Bergkessel; Sourav Bandyopadhyay; Michael Shales; Hannes Braberg; Gerard Cagney; Sean R. Collins; Gregg B. Whitworth; Tracy L. Kress; Jonathan S. Weissman; Trey Ideker; Christine Guthrie; Nevan J. Krogan
We used a quantitative, high-density genetic interaction map, or E-MAP (Epistatic MiniArray Profile), to interrogate the relationships within and between RNA-processing pathways. Due to their complexity and the essential roles of many of the components, these pathways have been difficult to functionally dissect. Here, we report the results for 107,155 individual interactions involving 552 mutations, 166 of which are hypomorphic alleles of essential genes. Our data enabled the discovery of links between components of the mRNA export and splicing machineries and Sem1/Dss1, a component of the 19S proteasome. In particular, we demonstrate that Sem1 has a proteasome-independent role in mRNA export as a functional component of the Sac3-Thp1 complex. Sem1 also interacts with Csn12, a component of the COP9 signalosome. Finally, we show that Csn12 plays a role in pre-mRNA splicing, which is independent of other signalosome components. Thus, Sem1 is involved in three separate and functionally distinct complexes.
American Journal of Respiratory and Critical Care Medicine | 2014
Katrine Whiteson; Barbara A. Bailey; Megan Bergkessel; Douglas Conrad; Laurence Delhaes; Ben Felts; J. Kirk Harris; Ryan C. Hunter; Yan Wei Lim; Heather Maughan; Robert A. Quinn; Peter Salamon; James C. Sullivan; Brandie D. Wagner; Paul B. Rainey
A continuously mixed series of microbial communities inhabits various points of the respiratory tract, with community composition determined by distance from colonization sources, colonization rates, and extinction rates. Ecology and evolution theory developed in the context of biogeography is relevant to clinical microbiology and could reframe the interpretation of recent studies comparing communities from lung explant samples, sputum samples, and oropharyngeal swabs. We propose an island biogeography model of the microbial communities inhabiting different niches in human airways. Island biogeography as applied to communities separated by time and space is a useful parallel for exploring microbial colonization of healthy and diseased lungs, with the potential to inform our understanding of microbial community dynamics and the relevance of microbes detected in different sample types. In this perspective, we focus on the intermixed microbial communities inhabiting different regions of the airways of patients with cystic fibrosis.
RNA | 2011
Megan Bergkessel; Gregg B. Whitworth; Christine Guthrie
Gene expression in eukaryotic cells is profoundly influenced by the post-transcriptional processing of mRNAs, including the splicing of introns in the nucleus and both nuclear and cytoplasmic degradation pathways. These processes have the potential to affect both the steady-state levels and the kinetics of changes to levels of intron-containing transcripts. Here we report the use of a splicing isoform-specific microarray platform to investigate the effects of diverse stress conditions on pre-mRNA processing. Interestingly, we find that diverse stresses cause distinct patterns of changes at this level. The responses we observed are most dramatic for the RPGs and can be categorized into three major classes. The first is characterized by accumulation of RPG pre-mRNA and is seen in multiple types of amino acid starvation regimes; the magnitude of splicing inhibition correlates with the severity of the stress. The second class is characterized by a rapid decrease in both pre- and mature RPG mRNA and is seen in many stresses that inactivate the TORC1 kinase complex. These decreases depend on nuclear turnover of the intron-containing pre-RNAs. The third class is characterized by a decrease in RPG pre-mRNA, with only a modest reduction in the mature species; this response is observed in hyperosmotic and cation-toxic stresses. We show that casein kinase 2 (CK2) makes important contributions to the changes in pre-mRNA processing, particularly for the first two classes of stress responses. In total, our data suggest that complex post-transcriptional programs cooperate to fine-tune expression of intron-containing transcripts in budding yeast.
Nature Reviews Microbiology | 2016
Megan Bergkessel; David W. Basta; Dianne K. Newman
Most bacteria spend the majority of their time in prolonged states of very low metabolic activity and little or no growth, in which electron donors, electron acceptors and/or nutrients are limited, but cells are poised to undergo rapid division cycles when resources become available. These non-growing states are far less studied than other growth states, which leaves many questions regarding basic bacterial physiology unanswered. In this Review, we discuss findings from a small but diverse set of systems that have been used to investigate how growth-arrested bacteria adjust metabolism, regulate transcription and translation, and maintain their chromosomes. We highlight major questions that remain to be addressed, and suggest that progress in answering them will be aided by recent methodological advances and by dialectic between environmental and molecular microbiology perspectives.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Brett M. Babin; Megan Bergkessel; Michael J. Sweredoski; Annie Moradian; Sonja Hess; Dianne K. Newman; David A. Tirrell
Significance Pathogens that are dormant or growing slowly play important roles in chronic infections, but studying how cells adapt to these conditions is difficult experimentally. This work demonstrates that time-selective analysis of cellular protein synthesis, using bioorthogonal noncanonical amino acid tagging (BONCAT), can provide the sensitivity needed to identify important factors in slow-growth physiology. We identified in Pseudomonas aeruginosa, a previously uncharacterized transcriptional regulator that is expressed preferentially under slow-growth conditions, binds RNA polymerase, and has widespread effects on gene expression. This factor is one of several proteins of unknown function identified in our proteomic analysis, and our results suggest that further characterization of fundamental cellular processes under these conditions will shed light on important and understudied realms of biology. Microbial quiescence and slow growth are ubiquitous physiological states, but their study is complicated by low levels of metabolic activity. To address this issue, we used a time-selective proteome-labeling method [bioorthogonal noncanonical amino acid tagging (BONCAT)] to identify proteins synthesized preferentially, but at extremely low rates, under anaerobic survival conditions by the opportunistic pathogen Pseudomonas aeruginosa. One of these proteins is a transcriptional regulator that has no homology to any characterized protein domains and is posttranscriptionally up-regulated during survival and slow growth. This small, acidic protein associates with RNA polymerase, and chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing suggests that the protein associates with genomic DNA through this interaction. ChIP signal is found both in promoter regions and throughout the coding sequences of many genes and is particularly enriched at ribosomal protein genes and in the promoter regions of rRNA genes. Deletion of the gene encoding this protein affects expression of these and many other genes and impacts biofilm formation, secondary metabolite production, and fitness in fluctuating conditions. On the basis of these observations, we have designated the protein SutA (survival under transitions A).
Mbio | 2015
Kyle C. Costa; Megan Bergkessel; Scott H. Saunders; Jonas Korlach; Dianne K. Newman
ABSTRACT Diverse bacteria, including several Pseudomonas species, produce a class of redox-active metabolites called phenazines that impact different cell types in nature and disease. Phenazines can affect microbial communities in both positive and negative ways, where their presence is correlated with decreased species richness and diversity. However, little is known about how the concentration of phenazines is modulated in situ and what this may mean for the fitness of members of the community. Through culturing of phenazine-degrading mycobacteria, genome sequencing, comparative genomics, and molecular analysis, we identified several conserved genes that are important for the degradation of three Pseudomonas-derived phenazines: phenazine-1-carboxylic acid (PCA), phenazine-1-carboxamide (PCN), and pyocyanin (PYO). PCA can be used as the sole carbon source for growth by these organisms. Deletion of several genes in Mycobacterium fortuitum abolishes the degradation phenotype, and expression of two genes in a heterologous host confers the ability to degrade PCN and PYO. In cocultures with phenazine producers, phenazine degraders alter the abundance of different phenazine types. Not only does degradation support mycobacterial catabolism, but also it provides protection to bacteria that would otherwise be inhibited by the toxicity of PYO. Collectively, these results serve as a reminder that microbial metabolites can be actively modified and degraded and that these turnover processes must be considered when the fate and impact of such compounds in any environment are being assessed. IMPORTANCE Phenazine production by Pseudomonas spp. can shape microbial communities in a variety of environments ranging from the cystic fibrosis lung to the rhizosphere of dryland crops. For example, in the rhizosphere, phenazines can protect plants from infection by pathogenic fungi. The redox activity of phenazines underpins their antibiotic activity, as well as providing pseudomonads with important physiological benefits. Our discovery that soil mycobacteria can catabolize phenazines and thereby protect other organisms against phenazine toxicity suggests that phenazine degradation may influence turnover in situ. The identification of genes involved in the degradation of phenazines opens the door to monitoring turnover in diverse environments, an essential process to consider when one is attempting to understand or control communities influenced by phenazines. Phenazine production by Pseudomonas spp. can shape microbial communities in a variety of environments ranging from the cystic fibrosis lung to the rhizosphere of dryland crops. For example, in the rhizosphere, phenazines can protect plants from infection by pathogenic fungi. The redox activity of phenazines underpins their antibiotic activity, as well as providing pseudomonads with important physiological benefits. Our discovery that soil mycobacteria can catabolize phenazines and thereby protect other organisms against phenazine toxicity suggests that phenazine degradation may influence turnover in situ. The identification of genes involved in the degradation of phenazines opens the door to monitoring turnover in diverse environments, an essential process to consider when one is attempting to understand or control communities influenced by phenazines.
Methods in Enzymology | 2013
Megan Bergkessel; Christine Guthrie
Colony PCR is a method for rapidly screening colonies of yeast or bacteria that have grown up on selective media following a transformation step, to verify that the desired genetic construct is present, or to amplify a portion of the construct.
Molecular and Cellular Biology | 2016
Sharon Soucek; Yi Zeng; Deepti L. Bellur; Megan Bergkessel; Kevin J. Morris; Qiudong Deng; Duc M. Duong; Nicholas T. Seyfried; Christine Guthrie; Jonathan P. Staley; Milo B. Fasken; Anita H. Corbett
ABSTRACT Numerous RNA binding proteins are deposited onto an mRNA transcript to modulate posttranscriptional processing events ensuring proper mRNA maturation. Defining the interplay between RNA binding proteins that couple mRNA biogenesis events is crucial for understanding how gene expression is regulated. To explore how RNA binding proteins control mRNA processing, we investigated a role for the evolutionarily conserved polyadenosine RNA binding protein, Nab2, in mRNA maturation within the nucleus. This study reveals that nab2 mutant cells accumulate intron-containing pre-mRNA in vivo. We extend this analysis to identify genetic interactions between mutant alleles of nab2 and genes encoding a splicing factor, MUD2, and RNA exosome, RRP6, with in vivo consequences of altered pre-mRNA splicing and poly(A) tail length control. As further evidence linking Nab2 proteins to splicing, an unbiased proteomic analysis of vertebrate Nab2, ZC3H14, identifies physical interactions with numerous components of the spliceosome. We validated the interaction between ZC3H14 and U2AF2/U2AF65. Taking all the findings into consideration, we present a model where Nab2/ZC3H14 interacts with spliceosome components to allow proper coupling of splicing with subsequent mRNA processing steps contributing to a kinetic proofreading step that allows properly processed mRNA to exit the nucleus and escape Rrp6-dependent degradation.
Methods in Enzymology | 2013
Megan Bergkessel; Christine Guthrie
Transformation of chemically competent yeast cells is a method for introducing exogenous DNA into living cells. Typically, the DNA is either a plasmid carrying an autonomous replication sequence that allows for propagation or a linear piece of DNA to be integrated into the genome. The DNA usually also carries a marker that allows for selection of successfully transformed cells by plating on the appropriate selective media.
Cell | 2009
Megan Bergkessel; Gwendolyn M. Wilmes; Christine Guthrie
• Multiple adaptor proteins (e.g., Yra1/Aly/REF1 and SR proteins) drive mRNP export by loading dimeric export receptor (Mex67-Mtr2/TAP-p15/NXF1-NXT1).• In yeast, TREX complex recruited to polymerase; DECD helicase Sub2 loads Yra1 onto mRNA. In vertebrates, TREX binds cap via splicing-dependent interaction of Aly/REF1(vertebrate Yra1) with CBP80.• Export coupled to transcription via SAGA chromatin-remodeling complex, which binds TREX2 and relocates some genes to nuclear pore for export.• Export coupled to 3′ end processing (TREX required for 3′ end formation and release of mRNP from transcription site).• Different export adaptors or receptors confer transcript specifi city, e.g., TREX is important for export of heat-shock gene transcripts. • Transit through pore via binding of Mex67/TAP/NXF1 to nucleoporin FG repeats.• mRNP remodeled on cytoplasmic side of pore by Dbp5 DEAD-box helicase (which is activated by Gle1 and inositol phosphate).