Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Megan Brunjes Brophy is active.

Publication


Featured researches published by Megan Brunjes Brophy.


Journal of the American Chemical Society | 2012

Calcium ion gradients modulate the zinc affinity and antibacterial activity of human calprotectin.

Megan Brunjes Brophy; Joshua A. Hayden; Elizabeth M. Nolan

Calprotectin (CP) is an antimicrobial protein produced and released by neutrophils that inhibits the growth of pathogenic microorganisms by sequestering essential metal nutrients in the extracellular space. In this work, spectroscopic and thermodynamic metal-binding studies are presented to delineate the zinc-binding properties of CP. Unique optical absorption and EPR spectroscopic signatures for the interfacial His(3)Asp and His(4) sites of human calprotectin are identified by using Co(II) as a spectroscopic probe. Zinc competition titrations employing chromophoric Zn(II) indicators provide a 2:1 Zn(II):CP stoichiometry, confirm that the His(3)Asp and His(4) sites of CP coordinate Zn(II), and reveal that the Zn(II) affinity of both sites is calcium-dependent. The calcium-insensitive Zn(II) competitor ZP4 affords dissociation constants of K(d1) = 133 ± 58 pM and K(d2) = 185 ± 219 nM for CP in the absence of Ca(II). These values decrease to K(d1) ≤ 10 pM and K(d2) ≤ 240 pM in the presence of excess Ca(II). The K(d1) and K(d2) values are assigned to the His(3)Asp and His(4) sites, respectively. In vitro antibacterial activity assays indicate that the metal-binding sites and Ca(II)-replete conditions are required for CP to inhibit the growth of both Gram-negative and -positive bacteria. Taken together, these data provide a working model whereby calprotectin responds to physiological Ca(II) gradients to become a potent Zn(II) chelator in the extracellular space.


Journal of the American Chemical Society | 2013

High-Affinity Manganese Coordination by Human Calprotectin Is Calcium-Dependent and Requires the Histidine-Rich Site Formed at the Dimer Interface

Joshua A. Hayden; Megan Brunjes Brophy; Lisa S. Cunden; Elizabeth M. Nolan

Calprotectin (CP) is a transition metal-chelating antimicrobial protein of the calcium-binding S100 family that is produced and released by neutrophils. It inhibits the growth of various pathogenic microorganisms by sequestering the transition metal ions manganese and zinc. In this work, we investigate the manganese-binding properties of CP. We demonstrate that the unusual His(4) motif (site 2) formed at the S100A8/S100A9 dimer interface is the site of high-affinity Mn(II) coordination. We identify a low-temperature Mn(II) spectroscopic signal for this site consistent with an octahedral Mn(II) coordination sphere with simulated zero-field splitting parameters D = 270 MHz and E/D = 0.30 (E = 81 MHz). This analysis, combined with studies of mutant proteins, suggests that four histidine residues (H17 and H27 of S100A8; H91 and H95 of S100A9) coordinate Mn(II) in addition to two as-yet unidentified ligands. The His(3)Asp motif (site 1), which is also formed at the S100A8/S100A9 dimer interface, does not provide a high-affinity Mn(II) binding site. Calcium binding to the EF-hand domains of CP increases the Mn(II) affinity of the His(4) site from the low-micromolar to the mid-nanomolar range. Metal-ion selectivity studies demonstrate that CP prefers to coordinate Zn(II) over Mn(II). Nevertheless, the specificity of Mn(II) for the His(4) site provides CP with the propensity to form mixed Zn:Mn:CP complexes where one Zn(II) ion occupies site 1 and one Mn(II) ion occupies site 2. These studies support the notion that CP responds to physiological calcium ion gradients to become a high-affinity transition metal ion chelator in the extracellular space where it inhibits microbial growth.


Journal of the American Chemical Society | 2013

Contributions of the S100A9 C-terminal tail to high-affinity Mn(II) chelation by the host-defense protein human calprotectin.

Megan Brunjes Brophy; Toshiki G. Nakashige; Aleth Gaillard; Elizabeth M. Nolan

Human calprotectin (CP) is an antimicrobial protein that coordinates Mn(II) with high affinity in a Ca(II)-dependent manner at an unusual histidine-rich site (site 2) formed at the S100A8/S100A9 dimer interface. We present a 16-member CP mutant family where mutations in the S100A9 C-terminal tail (residues 96-114) are employed to evaluate the contributions of this region, which houses three histidines and four acidic residues, to Mn(II) coordination at site 2. The results from analytical size-exclusion chromatography, Mn(II) competition titrations, and electron paramagnetic resonance spectroscopy establish that the C-terminal tail is essential for high-affinity Mn(II) coordination by CP in solution. The studies indicate that His103 and His105 (HXH motif) of the tail complete the Mn(II) coordination sphere in solution, affording an unprecedented biological His6 site. These solution studies are in agreement with a Mn(II)-CP crystal structure reported recently (Damo, S. M.; et al. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 3841). Remarkably high-affinity Mn(II) binding is retained when either H103 or H105 are mutated to Ala, when the HXH motif is shifted from positions 103-105 to 104-106, and when the human tail is substituted by the C-terminal tail of murine S100A9. Nevertheless, antibacterial activity assays employing human CP mutants reveal that the native disposition of His residues is important for conferring growth inhibition against Escherichia coli and Staphylococcus aureus. Within the S100 family, the S100A8/S100A9 heterooligomer is essential for providing high-affinity Mn(II) binding; the S100A7, S100A9(C3S), S100A12, and S100B homodimers do not exhibit such Mn(II)-binding capacity.


Journal of the American Chemical Society | 2015

Manganese Binding Properties of Human Calprotectin under Conditions of High and Low Calcium: X-ray Crystallographic and Advanced Electron Paramagnetic Resonance Spectroscopic Analysis

Derek M. Gagnon; Megan Brunjes Brophy; Sarah E. J. Bowman; Troy A. Stich; Catherine L. Drennan; R. David Britt; Elizabeth M. Nolan

The antimicrobial protein calprotectin (CP), a hetero-oligomer of the S100 family members S100A8 and S100A9, is the only identified mammalian Mn(II)-sequestering protein. Human CP uses Ca(II) ions to tune its Mn(II) affinity at a biologically unprecedented hexahistidine site that forms at the S100A8/S100A9 interface, and the molecular basis for this phenomenon requires elucidation. Herein, we investigate the remarkable Mn(II) coordination chemistry of human CP using X-ray crystallography as well as continuous-wave (CW) and pulse electron paramagnetic resonance (EPR) spectroscopies. An X-ray crystallographic structure of Mn(II)-CP containing one Mn(II), two Ca(II), and two Na(I) ions per CP heterodimer is reported. The CW EPR spectrum of Ca(II)- and Mn(II)-bound CP prepared with a 10:0.9:1 Ca(II):Mn(II):CP ratio is characterized by an unusually low zero-field splitting of 485 MHz (E/D = 0.30) for the S = 5/2 Mn(II) ion, consistent with the high symmetry of the His6 binding site observed crystallographically. Results from electron spin-echo envelope modulation and electron-nuclear double resonance experiments reveal that the six Mn(II)-coordinating histidine residues of Ca(II)- and Mn(II)-bound CP are spectroscopically equivalent. The observed (15)N (I = 1/2) hyperfine couplings (A) arise from two distinct classes of nitrogen atoms: the coordinating ε-nitrogen of the imidazole ring of each histidine ligand (A = [3.45, 3.71, 5.91] MHz) and the distal δ-nitrogen (A = [0.11, 0.18, 0.42] MHz). In the absence of Ca(II), the binding affinity of CP for Mn(II) drops by two to three orders of magnitude and coincides with Mn(II) binding at the His6 site as well as other sites. This study demonstrates the role of Ca(II) in enabling high-affinity and specific binding of Mn(II) to the His6 site of human calprotectin.


ACS Chemical Biology | 2015

Manganese and Microbial Pathogenesis: Sequestration by the Mammalian Immune System and Utilization by Microorganisms

Megan Brunjes Brophy; Elizabeth M. Nolan

Bacterial and fungal pathogens cause a variety of infectious diseases and constitute a significant threat to public health. The human innate immune system represents the first line of defense against pathogenic microbes and employs a range of chemical artillery to combat these invaders. One important mechanism of innate immunity is the sequestration of metal ions that are essential nutrients. Manganese is one nutrient that is required for many pathogens to establish an infective lifestyle. This review summarizes recent advances in the role of manganese in the host–pathogen interaction and highlights Mn(II) sequestration by neutrophil calprotectin as well as how bacterial acquisition and utilization of manganese enables pathogenesis.


Journal of the American Chemical Society | 2016

The Hexahistidine Motif of Host-Defense Protein Human Calprotectin Contributes to Zinc Withholding and Its Functional Versatility

Toshiki G. Nakashige; Jules Rabie Stephan; Lisa S. Cunden; Megan Brunjes Brophy; Andrew Wommack; Brenna C. Keegan; Jason Shearer; Elizabeth M. Nolan

Human calprotectin (CP, S100A8/S100A9 oligomer, MRP-8/MRP-14 oligomer) is an abundant host-defense protein that is involved in the metal-withholding innate immune response. CP coordinates a variety of divalent first-row transition metal ions, which is implicated in its antimicrobial function, and its ability to sequester nutrient Zn(II) ions from microbial pathogens has been recognized for over two decades. CP has two distinct transition-metal-binding sites formed at the S100A8/S100A9 dimer interface, including a histidine-rich site composed of S100A8 residues His17 and His27 and S100A9 residues His91 and His95. In this study, we report that CP binds Zn(II) at this site using a hexahistidine motif, completed by His103 and His105 of the S100A9 C-terminal tail and previously identified as the high-affinity Mn(II) and Fe(II) coordination site. Zn(II) binding at this unique site shields the S100A9 C-terminal tail from proteolytic degradation by proteinase K. X-ray absorption spectroscopy and Zn(II) competition titrations support the formation of a Zn(II)-His6 motif. Microbial growth studies indicate that the hexahistidine motif is important for preventing microbial Zn(II) acquisition from CP by the probiotic Lactobacillus plantarum and the opportunistic human pathogen Candida albicans. The Zn(II)-His6 site of CP expands the known biological coordination chemistry of Zn(II) and provides new insight into how the human innate immune system starves microbes of essential metal nutrients.


Journal of the American Chemical Society | 2018

Biochemical and Spectroscopic Observation of Mn(II) Sequestration from Bacterial Mn(II) Transport Machinery by Calprotectin

Rose C. Hadley; Derek M. Gagnon; Megan Brunjes Brophy; Yu Gu; Toshiki G. Nakashige; R. David Britt; Elizabeth M. Nolan

Human calprotectin (CP, S100A8/S100A9 oligomer) is a metal-sequestering host-defense protein that prevents bacterial acquisition of Mn(II). In this work, we investigate Mn(II) competition between CP and two solute-binding proteins that Staphylococcus aureus and Streptococcus pneumoniae, Gram-positive bacterial pathogens of significant clinical concern, use to obtain Mn(II) when infecting a host. Biochemical and electron paramagnetic resonance (EPR) spectroscopic analyses demonstrate that CP outcompetes staphylococcal MntC and streptococcal PsaA for Mn(II). This behavior requires the presence of excess Ca(II) ions, which enhance the Mn(II) affinity of CP. This report presents new spectroscopic evaluation of two Mn(II) proteins important for bacterial pathogenesis, direct observation of Mn(II) sequestration from bacterial Mn(II) acquisition proteins by CP, and molecular insight into the extracellular battle for metal nutrients that occurs during infection.


Biochemistry | 2017

Biochemical and Functional Evaluation of the Intramolecular Disulfide Bonds in the Zinc-Chelating Antimicrobial Protein Human S100A7 (Psoriasin)

Lisa S. Cunden; Megan Brunjes Brophy; Grayson E. Rodriguez; Hope A. Flaxman; Elizabeth M. Nolan

Human S100A7 (psoriasin) is a metal-chelating protein expressed by epithelial cells. It is a 22-kDa homodimer with two EF-hand domains per subunit and two transition-metal-binding His3Asp sites at the dimer interface. Each subunit contains two cysteine residues that can exist as free thiols (S100A7red) or as an intramolecular disulfide bond (S100A7ox). Herein, we examine the disulfide bond redox behavior, the Zn(II) binding properties, and the antibacterial activity of S100A7, as well as the effect of Ca(II) ions on these properties. In agreement with prior work [Hein, K. Z., et al. (2013) Proc. Natl. Acad. Sci. U. S. A. 112, 13039-13044], we show that apo S100A7ox is a substrate for the mammalian thioredoxin system; however, negligible reduction of the disulfide bond is observed for Ca(II)- and Zn(II)-bound S100A7ox. Furthermore, metal binding depresses the midpoint potential of the disulfide bond. S100A7ox and S100A7red each coordinate 2 equiv of Zn(II) with subnanomolar affinity in the absence and presence of Ca(II) ions, and the cysteine thiolates in S100A7red do not form a third high-affinity Zn(II) site. These results refute a prior model implicating the Cys thiolates of S100A7red in high-affinity Zn(II) binding [Hein, K. Z., et al. (2013) Proc. Natl. Acad. Sci. U. S. A. 112, 13039-13044]. S100A7ox and the disulfide-null variants show comparable Zn(II)-depletion profiles; however, only S100A7ox exhibits antibacterial activity against select bacterial species. Metal substitution experiments suggest that the disulfide bonds in S100A7 may enhance metal sequestration by the His3Asp sites and thereby confer growth inhibitory properties to S100A7ox.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2015

Impaired cholecystokinin-induced gallbladder emptying incriminated in spontaneous “black” pigment gallstone formation in germfree Swiss Webster mice

Stephanie E. Woods; Monika R. Leonard; Joshua A. Hayden; Megan Brunjes Brophy; Kara R. Bernert; Brigitte Lavoie; Sureshkumar Muthupalani; Mark T. Whary; Gary M. Mawe; Elizabeth M. Nolan; Martin C. Carey; James G. Fox


Metallomics | 2018

Calprotectin influences the aggregation of metal-free and metal-bound amyloid-β by direct interaction

Hyuck Jin Lee; Masha G. Savelieff; Juhye Kang; Megan Brunjes Brophy; Toshiki G. Nakashige; Shin Jung C. Lee; Elizabeth M. Nolan; Mi Hee Lim

Collaboration


Dive into the Megan Brunjes Brophy's collaboration.

Top Co-Authors

Avatar

Elizabeth M. Nolan

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Toshiki G. Nakashige

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Joshua A. Hayden

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Lisa S. Cunden

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. David Britt

University of California

View shared research outputs
Top Co-Authors

Avatar

Aleth Gaillard

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Andrew Wommack

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge