Megan Davey
University of Edinburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Megan Davey.
Molecular and Cellular Biology | 2003
Diana Otto; Colin J. Henderson; Dianne Carrie; Megan Davey; Thomas E. Gundersen; Rune Blomhoff; Ralf H. Adams; Cheryll Tickle; C. Roland Wolf
ABSTRACT The cytochrome P450-dependent monooxygenase system catalyzes the metabolism of xenobiotics and endogenous compounds, including hormones and retinoic acid. In order to establish the role of these enzymes in embryogenesis, we have inactivated the system through the deletion of the gene for the electron donor to all microsomal P450 proteins, cytochrome P450 reductase (Cpr). Mouse embryos homozygous for this deletion died in early to middle gestation (∼9.5 days postcoitum [dpc]) and exhibited a number of novel phenotypes, including the severe inhibition of vasculogenesis and hematopoiesis. In addition, defects in the brain, limbs, and cell types where CPR was shown to be expressed were observed. Some of the observed abnormalities have been associated with perturbations in retinoic acid homeostasis in later embryogenesis. Consistent with this possibility, embryos at 9.5 dpc had significantly elevated levels of retinoic acid and reduced levels of retinol. Further, some of the observed phenotypes could be either reversed or exacerbated by decreasing or increasing maternal retinoic acid exposure, respectively. Detailed analysis demonstrated a close relationship between the observed phenotype and the expression of genes controlling vasculogenesis. These data demonstrate that the cytochrome P450 system plays a key role in early embryonic development; this process appears to be, at least in part, controlled by regional concentrations of retinoic acid and has profound effects on blood vessel formation.
Journal of Leukocyte Biology | 2010
Valerie Garceau; Jacqueline Smith; Ian R. Paton; Megan Davey; Mario A. Fares; David P. Sester; David W. Burt; David A. Hume
Macrophages are involved in many aspects of development, host defense, pathology, and homeostasis. Their normal differentiation, proliferation, and survival are controlled by CSF‐1 via the activation of the CSF1R. A recently discovered cytokine, IL‐34, was shown to bind the same receptor in humans. Chicken is a widely used model organism in developmental biology, but the factors that control avian myelopoiesis have not been identified previously. The CSF‐1, IL‐34, and CSF1R genes in chicken and zebra finch were identified from respective genomic/cDNA sequence resources. Comparative analysis of the avian CSF1R loci revealed likely orthologs of mammalian macrophage‐specific promoters and enhancers, and the CSF1R gene is expressed in the developing chick embryo in a pattern consistent with macrophage‐specific expression. Chicken CSF‐1 and IL‐34 were expressed in HEK293 cells and shown to elicit macrophage growth from chicken BM cells in culture. Comparative sequence and co‐evolution analysis across all vertebrates suggests that the two ligands interact with distinct regions of the CSF1R. These studies demonstrate that there are two separate ligands for a functional CSF1R across all vertebrates.
Development | 2009
Yili Yin; Fiona Bangs; I. Robert Paton; Alan R. Prescott; John James; Megan Davey; Paul Whitley; Grigory Genikhovich; Ulrich Technau; David W. Burt; Cheryll Tickle
The chicken talpid3 mutant, with polydactyly and defects in other embryonic regions that depend on hedgehog (Hh) signalling (e.g. the neural tube), has a mutation in KIAA0568. Similar phenotypes are seen in mice and in human syndromes with mutations in genes that encode centrosomal or intraflagella transport proteins. Such mutations lead to defects in primary cilia, sites where Hh signalling occurs. Here, we show that cells of talpid3 mutant embryos lack primary cilia and that primary cilia can be rescued with constructs encoding Talpid3. talpid3 mutant embryos also develop polycystic kidneys, consistent with widespread failure of ciliogenesis. Ultrastructural studies of talpid3 mutant neural tube show that basal bodies mature but fail to dock with the apical cell membrane, are misorientated and almost completely lack ciliary axonemes. We also detected marked changes in actin organisation in talpid3 mutant cells, which may explain misorientation of basal bodies. KIAA0586 was identified in the human centrosomal proteome and, using an antibody against chicken Talpid3, we detected Talpid3 in the centrosome of wild-type chicken cells but not in mutant cells. Cloning and bioinformatic analysis of the Talpid3 homolog from the sea anemone Nematostella vectensis identified a highly conserved region in the Talpid3 protein, including a predicted coiled-coil domain. We show that this region is required to rescue primary cilia formation and neural tube patterning in talpid3 mutant embryos, and is sufficient for centrosomal localisation. Thus, Talpid3 is one of a growing number of centrosomal proteins that affect both ciliogenesis and Hh signalling.
Development | 2010
Catarina Cruz; Vanessa Ribes; Eva Kutejova; Jordi Cayuso; Victoria Lawson; Dominic P. Norris; Jonathan Stevens; Megan Davey; Ken Blight; Fiona Bangs; Anita Mynett; Elizabeth M. A. Hirst; Rachel Chung; Nikolaos Balaskas; Steven L. Brody; Elisa Martí; James Briscoe
Sonic hedgehog signalling is essential for the embryonic development of many tissues including the central nervous system, where it controls the pattern of cellular differentiation. A genome-wide screen of neural progenitor cells to evaluate the Shh signalling-regulated transcriptome identified the forkhead transcription factor Foxj1. In both chick and mouse Foxj1 is expressed in the ventral midline of the neural tube in cells that make up the floor plate. Consistent with the role of Foxj1 in the formation of long motile cilia, floor plate cells produce cilia that are longer than the primary cilia found elsewhere in the neural tube, and forced expression of Foxj1 in neuroepithelial cells is sufficient to increase cilia length. In addition, the expression of Foxj1 in the neural tube and in an Shh-responsive cell line attenuates intracellular signalling by decreasing the activity of Gli proteins, the transcriptional mediators of Shh signalling. We show that this function of Foxj1 depends on cilia. Nevertheless, floor plate identity and ciliogenesis are unaffected in mouse embryos lacking Foxj1 and we provide evidence that additional transcription factors expressed in the floor plate share overlapping functions with Foxj1. Together, these findings identify a novel mechanism that modifies the cellular response to Shh signalling and reveal morphological and functional features of the amniote floor plate that distinguish these cells from the rest of the neuroepithelium.
Cytogenetic and Genome Research | 2007
Megan Davey; Cheryll Tickle
The traditional strength of chicken embryos for studying development is that they are readily manipulated. This has led to some major discoveries in developmental biology such as the demonstration that the neural crest gives rise to almost the entire peripheral nervous system and the identification of signalling centres that specify the pattern of structures in the central nervous system and limb. More recently with the burgeoning discovery of developmentally important genes, chicken embryos have provided useful models for testing function. Uncovering the molecular basis of development provides direct links with clinical genetics. In addition, since many genes that have crucial roles in development are also expressed in tumours, basic research on chickens has implications for understanding human health and disease. Now that the chicken genome has been sequenced and genomic resources for chicken are becoming increasingly available, this opens up opportunities for combining these new technologies with the manipulability of chicken embryos and also exploiting comparative genomics.
Pediatric Nephrology | 1999
Jamie A. Davies; Megan Davey
Abstract The collecting duct system of the metanephric kidney develops from the ureteric bud, an outgrowth from the caudal end of the Wolffian duct. The ureteric bud is induced to form by signals emanating from a specific area of intermediate mesoderm, which it immediately invades. In response to further mesenchyme-derived signals, the ureteric bud ramifies to form a tree-like collecting duct system, which in turn signals clumps of the mesenchyme cells that surround it to differentiate into epithelial nephrons. The morphogenesis of the collecting duct system is driven by two processes – growth and branching – which are to some extent separable. Each depends on diffusible signals, a number of which have been identified in recent years; growth promoters include hepatocyte growth factor and activin, while ramogens include glial cell line-derived neurotrophic factor, neurturin and persephin. Arborisation also depends on matrix components, including proteoglycans, integrins and their ligands, and metalloproteinases, such as matrix metalloproteinase-9, that are involved in matrix remodelling. So far, little progress has been made in elucidating the intracellular pathways responsible for translating growth factor ”instructions” into morphological change, but a role for some intracellular components, such as protein kinase C, formins and the cytoskeleton, is implied by recent experimental data. More information on these internal pathways of control is expected over the next few years.
Development | 2011
Fiona Bangs; Nicole E Antonio; Peerapat Thongnuek; Monique Welten; Megan Davey; James Briscoe; Cheryll Tickle
Specification of digit number and identity is central to digit pattern in vertebrate limbs. The classical talpid3 chicken mutant has many unpatterned digits together with defects in other regions, depending on hedgehog (Hh) signalling, and exhibits embryonic lethality. The talpid3 chicken has a mutation in KIAA0586, which encodes a centrosomal protein required for the formation of primary cilia, which are sites of vertebrate Hh signalling. The highly conserved exons 11 and 12 of KIAA0586 are essential to rescue cilia in talpid3 chicken mutants. We constitutively deleted these two exons to make a talpid3–/– mouse. Mutant mouse embryos lack primary cilia and, like talpid3 chicken embryos, have face and neural tube defects but also defects in left/right asymmetry. Conditional deletion in mouse limb mesenchyme results in polydactyly and in brachydactyly and a failure of subperisoteal bone formation, defects that are attributable to abnormal sonic hedgehog and Indian hedgehog signalling, respectively. Like talpid3 chicken limbs, the mutant mouse limbs are syndactylous with uneven digit spacing as reflected in altered Raldh2 expression, which is normally associated with interdigital mesenchyme. Both mouse and chicken mutant limb buds are broad and short. talpid3–/– mouse cells migrate more slowly than wild-type mouse cells, a change in cell behaviour that possibly contributes to altered limb bud morphogenesis. This genetic mouse model will facilitate further conditional approaches, epistatic experiments and open up investigation into the function of the novel talpid3 gene using the many resources available for mice.
Bone | 2010
Vicky MacRae; Megan Davey; Lynn McTeir; Sonoko Narisawa; Manisha C. Yadav; José Luis Millán; Colin Farquharson
PHOSPHO1 is a bone-specific phosphatase implicated in the initiation of inorganic phosphate generation for matrix mineralization. The control of mineralization is attributed to the actions of tissue-nonspecific alkaline phosphatase (TNAP). However, matrix vesicles (MVs) containing apatite crystals are present in patients with hypophosphatasia as well as TNAP null (Akp2(-/-)) mice. It is therefore likely that other phosphatases work with TNAP to regulate matrix mineralization. Although PHOSPHO1 and TNAP expression is associated with MVs, it is not known if PHOSPHO1 and TNAP are coexpressed during the early stages of limb development. Furthermore, the functional in vivo role of PHOSPHO1 in matrix mineralization has yet to be established. Here, we studied the temporal expression and functional role of PHOSPHO1 within chick limb bud mesenchymal micromass cultures and also in wild-type and talpid(3) chick mutants. These mutants are characterized by defective hedgehog signalling and the absence of endochondral mineralization. The ability of in vitro micromass cultures to differentiate and mineralize their matrix was temporally associated with increased expression of PHOSPHO1 and TNAP. Comparable changes in expression were noted in developing embryonic legs (developmental stages 23-36HH). Micromass cultures treated with lansoprazole, a small-molecule inhibitor of PHOSPHO1 activity, or FGF2, an inhibitor of chondrocyte differentiation, resulted in reduced alizarin red staining (P<0.05). FGF2 treatment also caused a reduction in PHOSPHO1 (P<0.001) and TNAP (P<0.001) expression. Expression analysis by whole-mount RNA in situ hybridization correlated with qPCR micromass data and demonstrated the existence of a tightly regulated pattern of Phospho1 and Tnap expression which precedes mineralization. Treatment of developing embryos for 5 days with lansoprazole completely inhibited mineralization of all leg and wing long bones as assessed by alcian blue/alizarin red staining. Furthermore, long bones of the talpid(3) chick mutant did not express Phospho1 or Tnap whereas flat bones mineralized normally and expressed both phosphatases. In conclusion, this study has disclosed that PHOSPHO1 expression mirrors that of TNAP during embryonic bone development and that PHOSPHO1 contributes to bone mineralization in developing chick long bones.
Developmental Dynamics | 2011
Ian C. Dunn; I. Robert Paton; Allyson K. Clelland; Sujith Sebastian; Edward J. Johnson; Lynn McTeir; Dawn Windsor; Adrian Sherman; Helen Sang; Dave Burt; Cheryll Tickle; Megan Davey
Point mutations in the intronic ZRS region of Lmbr1, a limb specific cis‐regulatory element of Sonic hedgehog (Shh), are associated with polydactyly in humans, cats, and mice. We and others have recently mapped the dominant preaxial polydactyly (Po) locus in Silkie chickens to a single nucleotide polymorphism (SNP) in the ZRS region. Using polymorphisms in the chicken Shh sequence, we confirm that the ZRS region directly regulates Shh expression in the developing limb causing ectopic Shh expression in the anterior leg, prolonged Shh expression in the posterior limb, and allelic imbalance between wt and Slk Shh alleles in heterozygote limbs. Using Silkie legs, we have explored the consequences of increased Shh expression in the posterior leg on the patterning of the toes, and the induction of preaxial polydactyly. Developmental Dynamics 240:1163–1172, 2011.
eLife | 2015
Louise Stephen; Hasan Tawamie; Gemma M. Davis; Lars Tebbe; Peter Nürnberg; Gudrun Nürnberg; Holger Thiele; Michaela Thoenes; Eugen Boltshauser; Steffen Uebe; Oliver Rompel; André Reis; Arif B. Ekici; Lynn McTeir; Amy M Fraser; Emma A. Hall; Pleasantine Mill; Nicolas Daudet; Courtney E. Cross; Uwe Wolfrum; Rami Abou Jamra; Megan Davey; Hanno J. Bolz
Joubert syndrome (JBTS) is a severe recessive neurodevelopmental ciliopathy which can affect several organ systems. Mutations in known JBTS genes account for approximately half of the cases. By homozygosity mapping and whole-exome sequencing, we identified a novel locus, JBTS23, with a homozygous splice site mutation in KIAA0586 (alias TALPID3), a known lethal ciliopathy locus in model organisms. Truncating KIAA0586 mutations were identified in two additional patients with JBTS. One mutation, c.428delG (p.Arg143Lysfs*4), is unexpectedly common in the general population and may be a major contributor to JBTS. We demonstrate KIAA0586 protein localization at the basal body in human and mouse photoreceptors, as is common for JBTS proteins, and also in pericentriolar locations. We show that loss of TALPID3 (KIAA0586) function in animal models causes abnormal tissue polarity, centrosome length and orientation, and centriolar satellites. We propose that JBTS and other ciliopathies may in part result from cell polarity defects. DOI: http://dx.doi.org/10.7554/eLife.08077.001