Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Megan Garland is active.

Publication


Featured researches published by Megan Garland.


Science Translational Medicine | 2015

A small-molecule antivirulence agent for treating Clostridium difficile infection

Kristina Oresic Bender; Megan Garland; Jessica A. Ferreyra; Andrew J. Hryckowian; Matthew A. Child; Aaron W. Puri; David E. Solow-Cordero; Steven K. Higginbottom; Ehud Segal; Niaz Banaei; Aimee Shen; Justin L. Sonnenburg; Matthew Bogyo

A high-throughput screen against the Clostridium difficile toxin B cysteine protease domain identified a drug in clinical trials that reduced C. difficile pathology in a mouse model. A tough drug for a C. difficile problem Clostridium difficile infection (CDI) is an emerging disease threat caused by use of broad-spectrum antibiotics. CDI is the leading cause of hospital-acquired diarrhea, and with nearly half a million cases diagnosed in the United States each year, it places a yearly estimated burden of more than


Nature Chemical Biology | 2013

Small-molecule inhibition of a depalmitoylase enhances Toxoplasma host-cell invasion

Matthew A. Child; Hall Ci; Beck; Leslie Ofori; Victoria E. Albrow; Megan Garland; Paul W. Bowyer; Peter J. Bradley; James C. Powers; John C. Boothroyd; Eranthie Weerapana; Matthew Bogyo

4 billion on the U.S. healthcare system. A shift away from standard antibiotics is required to successfully contain this pathogen. Using a screen targeting bacterial virulence factors, Oresic Bender and colleagues identified a lead compound already in human clinical trials. The compound showed potent protective effects in a mouse model of CDI, supporting its translation into clinical studies as a new non-antibiotic treatment for CDI. Clostridium difficile infection (CDI) is a worldwide health threat that is typically triggered by the use of broad-spectrum antibiotics, which disrupt the natural gut microbiota and allow this Gram-positive anaerobic pathogen to thrive. The increased incidence and severity of disease coupled with decreased response, high recurrence rates, and emergence of multiple antibiotic-resistant strains have created an urgent need for new therapies. We describe pharmacological targeting of the cysteine protease domain (CPD) within the C. difficile major virulence factor toxin B (TcdB). Through a targeted screen with an activity-based probe for this protease domain, we identified a number of potent CPD inhibitors, including one bioactive compound, ebselen, which is currently in human clinical trials for a clinically unrelated indication. This drug showed activity against both major virulence factors, TcdA and TcdB, in biochemical and cell-based studies. Treatment in a mouse model of CDI that closely resembles the human infection confirmed a therapeutic benefit in the form of reduced disease pathology in host tissues that correlated with inhibition of the release of the toxic glucosyltransferase domain (GTD). Our results show that this non-antibiotic drug can modulate the pathology of disease and therefore could potentially be developed as a therapeutic for the treatment of CDI.


Nature Protocols | 2016

Labeling of active proteases in fresh-frozen tissues by topical application of quenched activity-based probes

Nimali P. Withana; Megan Garland; Martijn Verdoes; Leslie Ofori; Ehud Segal; Matthew Bogyo

While there have been numerous advances in our understanding of how apicomplexan parasites such as Toxoplasma gondii enter host cells, many of the signaling pathways and enzymes involved in the organization of invasion mediators remain poorly defined. We recently performed a forward chemical genetic screen in T. gondii and identified compounds that markedly enhanced infectivity. Although molecular dissection of invasion has benefited from the use of small-molecule inhibitors, the mechanisms underlying induction of invasion by small-molecule enhancers have never been described. Here we identify the Toxoplasma orthologue of human APT1, palmitoyl protein thioesterase-1 (TgPPT1), as the target of one class of small molecule enhancers. Inhibition of this uncharacterized thioesterase triggered secretion of invasion-associated organelles, increased motility and enhanced the invasive capacity of tachyzoites. We demonstrate that TgPPT1 is a bona fide depalmitoylase, thereby establishing an important role for dynamic and reversible palmitoylation in host-cell invasion by T. gondii.


Chemical Reviews | 2017

Chemical Strategies To Target Bacterial Virulence

Megan Garland; Sebastian Loscher; Matthew Bogyo

Active enzymes, such as proteases, often serve as valuable biomarkers for various disease pathologies. Therefore, methods to detect specific enzyme activities in biological samples can provide information to guide disease detection and diagnosis and to increase our understanding of the biological roles of specific enzyme targets. In this protocol, we outline methods for the topical application of fluorescently quenched activity-based probes (qABPs) to fresh-frozen tissue samples. This technique enables rapid imaging of enzyme activity at cellular resolution, and it can be combined with antibody labeling for immunodiagnosis. In this method, fresh-frozen tissue sections are fixed, incubated with the probe and imaged using fluorescence microscopy. This provides an advance over classical immunohistochemistry (IHC) in that it is rapid (4–8 h) and inexpensive, and it provides information on enzyme activity. Furthermore, it can be used with any of the growing number of fluorescent ABPs to provide data for more effective disease monitoring and diagnosis.


The Journal of Nuclear Medicine | 2016

Dual-Modality Activity-Based Probes as Molecular Imaging Agents for Vascular Inflammation

Nimali P. Withana; Toshinobu Saito; Xiaowei Ma; Megan Garland; Changhao Liu; Hisanori Kosuge; Myriam Amsallem; Martijn Verdoes; Leslie Ofori; Michael P. Fischbein; Mamoru Arakawa; Zhen Cheng; Michael V. McConnell; Matthew Bogyo

Antibiotic resistance is a significant emerging health threat. Exacerbating this problem is the overprescription of antibiotics as well as a lack of development of new antibacterial agents. A paradigm shift toward the development of nonantibiotic agents that target the virulence factors of bacterial pathogens is one way to begin to address the issue of resistance. Of particular interest are compounds targeting bacterial AB toxins that have the potential to protect against toxin-induced pathology without harming healthy commensal microbial flora. Development of successful antitoxin agents would likely decrease the use of antibiotics, thereby reducing selective pressure that leads to antibiotic resistance mutations. In addition, antitoxin agents are not only promising for therapeutic applications, but also can be used as tools for the continued study of bacterial pathogenesis. In this review, we discuss the growing number of examples of chemical entities designed to target exotoxin virulence factors from important human bacterial pathogens.


Nature Chemical Biology | 2018

Identification of a S. aureus virulence factor by activity-based protein profiling (ABPP)

Christian S. Lentz; Jessica R. Sheldon; Lisa A. Crawford; Rachel L. Cooper; Megan Garland; Manuel R. Amieva; Eranthie Weerapana; Eric P. Skaar; Matthew Bogyo

Macrophages are cellular mediators of vascular inflammation and are involved in the formation of atherosclerotic plaques. These immune cells secrete proteases such as matrix metalloproteinases and cathepsins that contribute to disease formation and progression. Here, we demonstrate that activity-based probes (ABPs) targeting cysteine cathepsins can be used in murine models of atherosclerosis to noninvasively image activated macrophage populations using both optical and PET/CT methods. The probes can also be used to topically label human carotid plaques demonstrating similar specific labeling of activated macrophage populations. Methods: Macrophage-rich carotid lesions were induced in FVB mice fed on a high-fat diet by streptozotocin injection followed by ligation of the left common carotid artery. Mice with carotid atherosclerotic plaques were injected with the optical or dual-modality probes BMV109 and BMV101, respectively, via the tail vein and noninvasively imaged by optical and small-animal PET/CT at different time points. After noninvasive imaging, the murine carotid arteries were imaged in situ and ex vivo, followed by immunofluorescence staining to confirm target labeling. Additionally, human carotid plaques were topically labeled with the probe and analyzed by both sodium dodecyl sulfate polyacrylamide gel electrophoresis and immunofluorescence staining to confirm the primary targets of the probe. Results: Quantitative analysis of the signal intensity from both optical and PET/CT imaging showed significantly higher levels of accumulation of BMV109 and BMV101 (P < 0.005 and P < 0.05, respectively) in the ligated left carotid arteries than the right carotid or healthy arteries. Immunofluorescence staining for macrophages in cross-sectional slices of the murine artery demonstrated substantial infiltration of macrophages in the neointima and adventitia of the ligated left carotid arteries compared with the right. Analysis of the human plaque tissues by sodium dodecyl sulfate polyacrylamide gel electrophoresis confirmed that the primary targets of the probe were cathepsins X, B, S, and L. Immunofluorescence labeling of the human tissue with the probe demonstrated colocalization of the probe with CD68, elastin, and cathepsin S, similar to that observed in the experimental carotid inflammation murine model. Conclusion: We demonstrate that ABPs targeting the cysteine cathepsins can be used in murine models of atherosclerosis to noninvasively image activated macrophage populations using both optical and PET/CT methods. The probes could also be used to topically label human carotid plaques demonstrating similar specific labeling of activated macrophage populations. Therefore, ABPs targeting the cysteine cathepsins are potentially valuable new reagents for rapid and noninvasive imaging of atherosclerotic disease progression and plaque vulnerability.


Mbio | 2017

Toxoplasma DJ-1 Regulates Organelle Secretion by a Direct Interaction with Calcium-Dependent Protein Kinase 1

Matthew A. Child; Megan Garland; Ian T. Foe; Peter Madzelan; Moritz Treeck; Wouter A. van der Linden; Kristina Oresic Bender; Eranthie Weerapana; Mark A. Wilson; John C. Boothroyd; Michael L. Reese; Matthew Bogyo

Serine hydrolases play diverse roles in regulating host–pathogen interactions in a number of organisms, yet few have been characterized in the human pathogen Staphylococcus aureus. Here we describe a chemical proteomic screen that identified ten previously uncharacterized S. aureus serine hydrolases that mostly lack human homologs. We termed these enzymes fluorophosphonate-binding hydrolases (FphA–J). One hydrolase, FphB, can process short fatty acid esters, exhibits increased activity in response to host cell factors, is located predominantly on the bacterial cell surface in a subset of cells, and is concentrated in the division septum. Genetic disruption of fphB confirmed that the enzyme is dispensable for bacterial growth in culture but crucial for establishing infection in distinct sites in vivo. A selective small molecule inhibitor of FphB effectively reduced infectivity in vivo, suggesting that it may be a viable therapeutic target for the treatment or management of Staphylococcus infections.ABP profiling identifies uncharacterized S. aureus serine hydrolases, including the surface-localized FphB, which processes lipid ester substrates and is required for infection in vivo. An FphB inhibitor reduces in vivo bacterial load.


PLOS ONE | 2018

Development of an activity-based probe for acyl-protein thioesterases

Megan Garland; Christopher J. Schulze; Ian T. Foe; Wouter A. van der Linden; Matthew A. Child; Matthew Bogyo

ABSTRACT Human DJ-1 is a highly conserved and yet functionally enigmatic protein associated with a heritable form of Parkinson’s disease. It has been suggested to be a redox-dependent regulatory scaffold, binding to proteins to modulate their function. Here we present the X-ray crystal structure of the Toxoplasma orthologue Toxoplasma gondii DJ-1 (TgDJ-1) at 2.1-Å resolution and show that it directly associates with calcium-dependent protein kinase 1 (CDPK1). The TgDJ-1 structure identifies an orthologously conserved arginine dyad that acts as a phospho-gatekeeper motif to control complex formation. We determined that the binding of TgDJ-1 to CDPK1 is sensitive to oxidation and calcium, and that this interaction potentiates CDPK1 kinase activity. Finally, we show that genetic deletion of TgDJ-1 results in upregulation of CDPK1 expression and that disruption of the CDPK1/TgDJ-1 complex in vivo prevents normal exocytosis of parasite virulence-associated organelles called micronemes. Overall, our data suggest that TgDJ-1 functions as a noncanonical kinase-regulatory scaffold that integrates multiple intracellular signals to tune microneme exocytosis in T. gondii. IMPORTANCE Apicomplexan parasites such as Toxoplasma and Plasmodium are obligate intracellular parasites that require the protective environment of a host cell in order to replicate and survive within a host organism. These parasites secrete effector proteins from specialized apical organelles to select and invade a chosen host cell. The secretion of these organelles is a tightly regulated process coordinated by endogenous small molecules and calcium-dependent protein kinases. We previously identified the Toxoplasma orthologue of the highly conserved protein DJ-1 as a regulator of microneme secretion, but the molecular basis for this was not known. We have now identified the molecular mechanism for how TgDJ-1 regulates microneme secretion. TgDJ-1 interacts with the kinase responsible for the secretion of these organelles (calcium-dependent kinase 1) and synergizes with calcium to potentiate kinase activity. This interaction is direct, phosphodependent, and necessary for the normal secretion of these important organelles. IMPORTANCE Apicomplexan parasites such as Toxoplasma and Plasmodium are obligate intracellular parasites that require the protective environment of a host cell in order to replicate and survive within a host organism. These parasites secrete effector proteins from specialized apical organelles to select and invade a chosen host cell. The secretion of these organelles is a tightly regulated process coordinated by endogenous small molecules and calcium-dependent protein kinases. We previously identified the Toxoplasma orthologue of the highly conserved protein DJ-1 as a regulator of microneme secretion, but the molecular basis for this was not known. We have now identified the molecular mechanism for how TgDJ-1 regulates microneme secretion. TgDJ-1 interacts with the kinase responsible for the secretion of these organelles (calcium-dependent kinase 1) and synergizes with calcium to potentiate kinase activity. This interaction is direct, phosphodependent, and necessary for the normal secretion of these important organelles.


Science Translational Medicine | 2016

Response to Comment on “A small-molecule antivirulence agent for treating Clostridium difficile infection”

Kristina Oresic Bender; Megan Garland; Matthew Bogyo

Protein palmitoylation is a dynamic post-translational modification (PTM) important for cellular functions such as protein stability, trafficking, localization, and protein-protein interactions. S-palmitoylation occurs via the addition of palmitate to cysteine residues via a thioester linkage, catalyzed by palmitoyl acyl transferases (PATs), with removal of the palmitate catalyzed by acyl protein thioesterases (APTs) and palmitoyl-protein thioesterases (PPTs). Tools that target the regulators of palmitoylation–PATs, APTs and PPTs–will improve understanding of this essential PTM. Here, we describe the synthesis and application of a cell-permeable activity-based probe (ABP) that targets APTs in intact mammalian cells and the parasite Toxoplasma gondii. Using a focused library of substituted chloroisocoumarins, we identified a probe scaffold with nanomolar affinity for human APTs (HsAPT1 and HsAPT2) and synthesized a fluorescent ABP, JCP174-BODIPY TMR (JCP174-BT). We use JCP174-BT to profile HsAPT activity in situ in mammalian cells, to detect an APT in T. gondii (TgPPT1). We show discordance between HsAPT activity levels and total protein concentration in some cell lines, indicating that total protein levels may not be representative of APT activity in complex systems, highlighting the utility of this probe.


Chemistry & Biology | 2016

A Bright Future for Precision Medicine: Advances in Fluorescent Chemical Probe Design and Their Clinical Application

Megan Garland; Joshua J. Yim; Matthew Bogyo

Ebselen’s antivirulence activity in Clostridium difficile infection is likely due to multiple modes of action, but the contribution of each to its efficacy remains unclear. Ebselen’s antivirulence activity in Clostridium difficile infection is likely due to multiple modes of action, but the contribution of each to its efficacy remains unclear.

Collaboration


Dive into the Megan Garland's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge