Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Megan H. Ryan is active.

Publication


Featured researches published by Megan H. Ryan.


Plant and Soil | 2011

Plant and microbial strategies to improve the phosphorus efficiency of agriculture

Alan Richardson; Jonathan P. Lynch; Peter R. Ryan; Emmanuel Delhaize; F. Andrew Smith; Sally E. Smith; Paul R. Harvey; Megan H. Ryan; Erik J. Veneklaas; Hans Lambers; Astrid Oberson; Richard A. Culvenor; Richard J. Simpson

BackgroundAgricultural production is often limited by low phosphorus (P) availability. In developing countries, which have limited access to P fertiliser, there is a need to develop plants that are more efficient at low soil P. In fertilised and intensive systems, P-efficient plants are required to minimise inefficient use of P-inputs and to reduce potential for loss of P to the environment.ScopeThree strategies by which plants and microorganisms may improve P-use efficiency are outlined: (i) Root-foraging strategies that improve P acquisition by lowering the critical P requirement of plant growth and allowing agriculture to operate at lower levels of soil P; (ii) P-mining strategies to enhance the desorption, solubilisation or mineralisation of P from sparingly-available sources in soil using root exudates (organic anions, phosphatases), and (iii) improving internal P-utilisation efficiency through the use of plants that yield more per unit of P uptake.ConclusionsWe critically review evidence that more P-efficient plants can be developed by modifying root growth and architecture, through manipulation of root exudates or by managing plant-microbial associations such as arbuscular mycorrhizal fungi and microbial inoculants. Opportunities to develop P-efficient plants through breeding or genetic modification are described and issues that may limit success including potential trade-offs and trait interactions are discussed. Whilst demonstrable progress has been made by selecting plants for root morphological traits, the potential for manipulating root physiological traits or selecting plants for low internal P concentration has yet to be realised.


Plant and Soil | 2011

Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems

Richard J. Simpson; Astrid Oberson; Richard A. Culvenor; Megan H. Ryan; Erik J. Veneklaas; Hans Lambers; Jonathan P. Lynch; Peter R. Ryan; Emmanuel Delhaize; F. Andrew Smith; Sally E. Smith; Paul R. Harvey; Alan E. Richardson

Phosphorus (P)-deficiency is a significant challenge for agricultural productivity on many highly P-sorbing weathered and tropical soils throughout the world. On these soils it can be necessary to apply up to five-fold more P as fertiliser than is exported in products. Given the finite nature of global P resources, it is important that such inefficiencies be addressed. For low P-sorbing soils, P-efficient farming systems will also assist attempts to reduce pollution associated with P losses to the environment. P-balance inefficiency of farms is associated with loss of P in erosion, runoff or leaching, uneven dispersal of animal excreta, and accumulation of P as sparingly-available phosphate and organic P in the soil. In many cases it is possible to minimise P losses in runoff or erosion. Uneven dispersal of P in excreta typically amounts to ~5% of P-fertiliser inputs. However, the rate of P accumulation in moderate to highly P-sorbing soils is a major contributor to inefficient P-fertiliser use. We discuss the causal edaphic, plant and microbial factors in the context of soil P management, P cycling and productivity goals of farms. Management interventions that can alter P-use efficiency are explored, including better targeted P-fertiliser use, organic amendments, removing other constraints to yield, zone management, use of plants with low critical-P requirements, and modified farming systems. Higher productivity in low-P soils, or lower P inputs in fertilised agricultural systems can be achieved by various interventions, but it is also critically important to understand the agroecology of plant P nutrition within farming systems for improvements in P-use efficiency to be realised.


Plant Physiology | 2011

Phosphorus Nutrition of Proteaceae in Severely Phosphorus-Impoverished Soils: Are There Lessons to Be Learned for Future Crops?

Hans Lambers; Patrick M. Finnegan; Etienne Laliberté; Stuart J. Pearse; Megan H. Ryan; Michael W. Shane; Erik J. Veneklaas

Australia harbors some of the most nutrient-impoverished soils on Earth. Southwestern Australian soils are especially phosphorus (P) impoverished, due to the age of this ancient landscape and it being unaffected by major geological disturbance for millions of years ([Hopper, 2009][1]; [Lambers et al


Crop & Pasture Science | 2015

Break crops and rotations for wheat

John Angus; John A. Kirkegaard; James R. Hunt; Megan H. Ryan; L. Ohlander; Mark B. Peoples

Abstract. Wheat crops usually yield more when grown after another species than when grown after wheat. Quantifying the yield increase and explaining the factors that affect the increase will assist farmers to decide on crop sequences. This review quantifies the yield increase, based on >900 comparisons of wheat growing after a break crop with wheat after wheat. The mean increase in wheat yield varied with species of break crop, ranging from 0.5 t ha–1 after oats to 1.2 t ha–1 after grain legumes. Based on overlapping experiments, the observed ranking of break-crop species in terms of mean yield response of the following wheat crop was: oats < canola ≈ mustard ≈ flax < field peas ≈ faba beans ≈ chickpeas ≈ lentils ≈ lupins. The mean additional wheat yield after oats or oilseed break crops was independent of the yield level of the following wheat crop. The wheat yield response to legume break crops was not clearly independent of yield level and was relatively greater at high yields. The yield of wheat after two successive break crops was 0.1–0.3 t ha–1 greater than after a single break crop. The additional yield of a second wheat crop after a single break crop ranged from 20% of the effect on a first wheat crop after canola, to 60% after legumes. The mean yield effect on a third wheat crop was negligible, except in persistently dry conditions. The variability of the break-crop effect on the yield of a second wheat crop was larger than of a first wheat crop, particularly following canola. We discuss the responses in relation to mechanisms by which break crops affect soil and following crops. By quantifying the magnitude and persistence of break-crop effects, we aim to provide a basis for the decision to grow continuous cereal crops, strategic rotations or tactically selected break crops. In many wheat-growing areas, the large potential yield increases due to break crops are not fully exploited. Research into quantifying the net benefits of break crops, determining the situations where the benefits are greatest, and improving the benefits of break crops promises to improve the efficiency of wheat-based cropping systems.


Plant Cell and Environment | 2012

Carbon trading for phosphorus gain: The balance between rhizosphere carboxylates and arbuscular mycorrhizal symbiosis in plant phosphorus acquisition

Megan H. Ryan; Mark Tibbett; Tammy Edmonds-Tibbett; L. D. B. Suriyagoda; Hans Lambers; Greg Cawthray; Jiayin Pang

Two key plant adaptations for phosphorus (P) acquisition are carboxylate exudation into the rhizosphere and mycorrhizal symbioses. These target different soil P resources, presumably with different plant carbon costs. We examined the effect of inoculation with arbuscular mycorrhizal fungi (AMF) on amount of rhizosphere carboxylates and plant P uptake for 10 species of low-P adapted Kennedia grown for 23 weeks in low-P sand. Inoculation decreased carboxylates in some species (up to 50%), decreased plant dry weight (21%) and increased plant P content (23%). There was a positive logarithmic relationship between plant P content and the amount of rhizosphere citric acid for inoculated and uninoculated plants. Causality was indicated by experiments using sand where little citric acid was lost from the soil solution over 2 h and citric acid at low concentrations desorbed P into the soil solution. Senesced leaf P concentration was often low and P-resorption efficiencies reached >90%. In conclusion, we propose that mycorrhizally mediated resource partitioning occurred because inoculation reduced rhizosphere carboxylates, but increased plant P uptake. Hence, presumably, the proportion of plant P acquired from strongly sorbed sources decreased with inoculation, while the proportion from labile inorganic P increased. Implications for plant fitness under field conditions now require investigation.


Plant and Soil | 2005

Reduced growth of autumn-sown wheat in a low-P soil is associated with high colonisation by arbuscular mycorrhizal fungi

Megan H. Ryan; Anthony F. van Herwaarden; J. F. Angus; John A. Kirkegaard

Autumn-sown wheat (Triticum aestivum) was studied over two seasons in south-eastern Australia, on a low-P soil where indigenous arbuscular mycorrhizal fungi (AMF) were known to provide little nutritional benefit to crops. It was hypothesised that AMF would be parasitic under these circumstances. Shoot dry mass and water soluble carbohydrate (WSC) reserves in roots and shoots were measured for wheat grown with or without P-fertiliser, in plots where crop sequences had produced either high or low colonisation by AMF. Application of P-fertiliser greatly increased crop growth and decreased colonisation by AMF. At tillering, colonisation by AMF ranged from 24 to 66% of root length when no P was applied and from 11 to 32% when P was applied. At each P-level, high colonisation correlated with reductions of around 20% in stem and root WSC concentrations (first season) or shoot WSC content and shoot dry mass (much drier second season). Impacts on yield were not significant (first season) or largely masked by water-stress and frost (second season). While the major fungal root diseases of the region were absent, interactions between crop sequence and other unknown biotic constraints could not be discounted. The results are consistent with the parasitic impacts of colonisation by AMF being induced primarily through the winter conditions experienced by the crops until anthesis. It is concluded that wheat in south-eastern Australia may benefit from reduced colonisation by AMF, which could achieved through selected crop sequences or, perhaps, targeted wheat breeding programs.


Functional Plant Biology | 2006

Root distributions of Australian herbaceous perennial legumes in response to phosphorus placement

Matthew D. Denton; Camille Sasse; Mark Tibbett; Megan H. Ryan

Many Australian plant species have specific root adaptations for growth in phosphorus-impoverished soils, and are often sensitive to high external P concentrations. The growth responses of native Australian legumes in agricultural soils with elevated P availability in the surface horizons are unknown. The aim of these experiments was to test the hypothesis that increased P concentration in surface soil would reduce root proliferation at depth in native legumes. The effect of P placement on root distribution was assessed for two Australian legumes, Kennedia prorepens F. Muell. and Lotus australis Andrews, and the exotic Medicago sativa L. Three treatments were established in a low-P loam soil: amendment of 0.15 g mono-calcium phosphate in either (i) the top 50 mm (120 µg P g-1) or (ii) the top 500 mm (12 µg P g-1) of soil, and an unamended control. In the unamended soil M. sativa was shallow rooted, with 58% of the root length of in the top 50 mm. K. prorepens and L. australis had a more even distribution down the pot length, with only 4 and 22% of their roots in the 0-50 mm pot section, respectively. When exposed to amendment of P in the top 50 mm, root length in the top 50 mm increased 4-fold for K. prorepens and 10-fold for M. sativa, although the pattern of root distribution did not change for M. sativa. L. australis was relatively unresponsive to P additions and had an even distribution of roots down the pot. Shoot P concentrations differed according to species but not treatment (K. prorepens 2.1 mg g-1, L. australis 2.4 mg g-1, M. sativa 3.2 mg g-1). Total shoot P content was higher for K. prorepens than for the other species in all treatments. In a second experiment, mono-ester phosphatases were analysed from 1-mm slices of soil collected directly adjacent to the rhizosphere. All species exuded phosphatases into the rhizosphere, but addition of P to soil reduced phosphatase activity only for K. prorepens. Overall, high P concentration in the surface soil altered root distribution, but did not reduce root proliferation at depth. Furthermore, the Australian herbaceous perennial legumes had root distributions that enhanced P acquisition from low-P soils.


Soil Research | 2006

Brassica crops stimulate soil mineral N accumulation

Megan H. Ryan; John A. Kirkegaard; J. F. Angus

The impact of Brassica crops and their tissues on accumulation of mineral N in soil was examined in the field and in laboratory incubation experiments. Mineral N accumulation over the summer fallow increased by an additional 39–49 kg/ha in the top 0.10 m of soil following brassicas compared with wheat at 2 sites. At a third site there was no increase in the top 0.10 m, but this was possibly due to leaching, as a 21–39 kg/ha increase was detected over the 1.50 m profile. The accumulation of mineral N in soil collected after harvest of canola crops and incubated in the laboratory was double that of soil collected after non-Brassica crops. This outcome was not evident in soil collected when crops were flowering, only occurred in the top 0.05 m of soil, and did not persist beyond week 3 of the incubation. In further laboratory incubations using tissues from wheat and a range of brassicas matched for C : N ratio but differing in glucosinolate concentration, Brassica root tissues initially immobilised, and later released, mineral N at a greater rate than wheat root tissues. These results suggest that enhanced accumulation of mineral N following Brassica crops compared with cereal crops is unlikely to be due to biofumigation of the soil microbial community. Shifts in the composition of the soil microbial community and differences in the chemical constituents of root tissues and in above-ground crop residue inputs may instead be responsible.


Genetic Resources and Crop Evolution | 2011

Prioritisation of novel pasture species for use in water-limited agriculture: a case study of Cullen in the Western Australian wheatbelt

Richard G. Bennett; Megan H. Ryan; Timothy D. Colmer; Daniel Real

In the face of a drying climate, identification of perennial pasture species suited to low-rainfall agricultural areas is needed. Effective prioritisation of putative pasture species may be possible through the use of desktop methods that are commonly employed to investigate the effect of climate change on native plant populations or the weed risk potential of plants. Species of Cullen Medik. native to Australia may be useful as perennial pasture legumes. It is not known, however, if species have adaptations for growth in low rainfall regions like the wheatbelt of Western Australia (WA). We tested the hypothesis that some Cullen species would be adapted to the climate and soils of the low-rainfall wheatbelt of WA using an analysis of soils and climate niche models of herbarium and germplasm records of 16 perennial, herbaceous and Australian Cullen species. We identified nine Cullen species that had some likely adaptation to the climate in the wheatbelt of WA, five of which (C. australasicum, C. cinereum, C. discolor, C. patens and C. tenax) had widespread adaptation to the climate and showed some adaptation to the soils of the wheatbelt of WA, making these priorities for further evaluation as perennial pasture species. The methodology is useful to identify species with likely best adaptation to low rainfall regions, generate expectations of where these may be most successful and to identify gaps in existing germplasm collections.


Plant Cell and Environment | 2014

Moderating mycorrhizas: arbuscular mycorrhizas modify rhizosphere chemistry and maintain plant phosphorus status within narrow boundaries

Nazanin K. Nazeri; Hans Lambers; Mark Tibbett; Megan H. Ryan

Pastures often experience a pulse of phosphorus (P) when fertilized. We examined the role of arbuscular mycorrhizal fungi (AMF) in the uptake of P from a pulse. Five legumes (Kennedia prostrata, Cullen australasicum, Bituminaria bituminosa, Medicago sativa and Trifolium subterraneum) were grown in a moderate P, sterilized field soil, either with (+AMF) or without (-AMF) addition of unsterilized field soil. After 9-10 weeks, half the pots received 15 mg P kg(-1) of soil. One week later, we measured: shoot and root dry weights; percentage of root length colonized by AMF; plant P, nitrogen and manganese (Mn) concentrations; and rhizosphere carboxylates, pH and plant-available P. The P pulse raised root P concentration by a similar amount in uncolonized and colonized plants, but shoot P concentration increased by 143% in uncolonized plants and 53% in colonized plants. Inoculation with AMF decreased the amount of rhizosphere carboxylates by 52%, raised rhizosphere pH by ∼0.2-0.7 pH units and lowered shoot Mn concentration by 38%. We conclude that AMF are not simply a means for plants to enhance P uptake when P is limiting, but also act to maintain shoot P within narrow boundaries and can affect nutrient uptake through their influence on rhizosphere chemistry.

Collaboration


Dive into the Megan H. Ryan's collaboration.

Top Co-Authors

Avatar

Hans Lambers

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Richard J. Simpson

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel R. Kidd

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Jiayin Pang

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Rebecca E. Haling

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Real

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Kadambot H. M. Siddique

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Michael Renton

University of Western Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge