Meghan A. Dureen
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Meghan A. Dureen.
Journal of the American Chemical Society | 2009
Meghan A. Dureen; Douglas W. Stephan
Frustrated and classical Lewis pairs arising from combinations of Lewis acids and phosphines react with terminal alkynes either via C-H activation forming an alkynylborate salt or by addition to alkyne giving a zwitterionic phosphonium borate.
Chemical Communications | 2008
Meghan A. Dureen; Alan J. Lough; Thomas M. Gilbert; Douglas W. Stephan
Catechol borane reacts with the frustrated Lewis pairs tBu2RP (R = tBu, 2-C6H4(C6H5)) and B(C6F5)3 to give the species [(C6H4O2)BPtBu2R][HB(C6F5)3] that can formally be described as either borenium cation or boryl-phosphonium salts; the nature of these species was probed with DFT calculations.
Inorganic Chemistry | 2009
Meghan A. Dureen; Gregory C. Welch; Thomas M. Gilbert; Douglas W. Stephan
The addition of diphenyl disulfide (PhSSPh) to tBu(2)P(C(6)F(4))B(C(6)F(5))(2) (1) affords the zwitterionic phosphonium borate [tBu(2)P(SPh)(C(6)F(4))B(SPh)(C(6)F(5))(2)] (2), while the addition of a base or donor solvent to 2 effected the liberation of disulfide and the formation of [tBu(2)P(C(6)F(4))B(donor)(C(6)F(5))(2)]. The reaction of 1 with S(8) gave tBu(2)P(S)(C(6)F(4))B(C(6)F(5))(2) (3). In a similar fashion, the frustrated Lewis pair of tBu(3)P/B(C(6)F(5))(3) reacts with RSSR to give [tBu(3)P(SR)][(RS)B(C(6)F(5))(3)] (R = Ph (4), p-tolyl (5), iPr (6)). In contrast, the corresponding reaction of BnSSBn yields a 1:1:1 mixture of tBu(3)P horizontal lineS, Bn(2)S, and B(C(6)F(5))(3). Species 4 reacts with p-tolylSSp-tolyl to give a mixture of 4, 5, PhSSPh, and p-tolylSS p-tolyl, while treatment of 5 with PhSSPh afforded a similar mixture. To probe this, a crossover experiment between [tBu(3)P(SPh)][B(C(6)F(5))(4)] (7) and [NBu(4)][(p-tolylS)B(C(6)F(5))(3)] (9) was performed. The former species was prepared by a reaction of 4 with [Ph(3)C][B(C(6)F(5)) (4)], while cation exchange of [(Et(2)O)(2)Li( p-tolylS)B(C(6)F(5))(3)] (8) with [NBu(4)]Br gave 9. The reaction of compounds 7 and 9 gave a statistical mixture of the cations [tBu(3)P(SR)](+) and anions [(RS)B(C(6)F(5))(3)](-), R = Ph, Sp-tolyl. The mechanism of this exchange process was probed and is proposed to be an equilibrium involving disulfide and the frustrated Lewis pair. Crystallographic data are reported for compounds 4-8, and the natures of the P-S cations are examined via DFT calculations.
Chemistry: A European Journal | 2010
Stephen J. Geier; Meghan A. Dureen; Eva Y. Ouyang; Douglas W. Stephan
By employing strategies based on frustrated Lewis pair chemistry, new routes to phosphino-phosphonium cations and zwitterions have been developed. B(C(6)F(5))(3) is shown to react with H(2) and P(2)tBu(4) to effect heterolytic hydrogen activation yielding the phosphino-phosphonium borate salt [(tBu(2)P)PHtBu(2)] [HB(C(6)F(5))(3)] (1). Alternatively, alkenylphosphino-phosphonium borate zwitterions are accessible by reaction of B(C(6)F(5))(3) and PhC[triple chemical bond]CH with P(2)Ph(4), P(4)Cy(4), or P(5)Ph(5) affording the species [(Ph(2)P)P(Ph)(2)C(Ph)=C(H)B(C(6)F(5))(3)] (2), [(P(3)Cy(3))P(Cy)C(Ph)=C(H)B(C(6)F(5))(3)] (3), and [(P(4)Ph(4))P(Ph)C(Ph)=C(H)B(C(6)F(5))(3)] (4). A related phosphino-phosphonium borate species-[(Ph(4)P(4))P(Ph)C(6)F(4)B(F)(C(6)F(5))(2)] (5) is also isolated from the thermolysis of B(C(6)F(5))(3) and P(5)Ph(5).
Organometallics | 2010
Meghan A. Dureen; Christopher C. Brown; Douglas W. Stephan
Journal of the American Chemical Society | 2010
Meghan A. Dureen; Douglas W. Stephan
Organometallics | 2010
Meghan A. Dureen; Christopher C. Brown; Douglas W. Stephan
Chemical Communications | 2010
Jason G. M. Morton; Meghan A. Dureen; Douglas W. Stephan
Dalton Transactions | 2009
Gregory C. Welch; Roberto Prieto; Meghan A. Dureen; Alan J. Lough; Oijsamola A. Labeodan; Thorsten Höltrichter-Rössmann; Douglas W. Stephan
Dalton Transactions | 2011
Meghan A. Dureen; Christopher C. Brown; Jason G. M. Morton; Douglas W. Stephan