Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Meghan C. Campbell is active.

Publication


Featured researches published by Meghan C. Campbell.


Movement Disorders | 2010

Amyloid imaging of Lewy body-associated disorders.

Erin R. Foster; Meghan C. Campbell; Michelle A. Burack; Johanna M. Hartlein; Hubert Flores; Nigel J. Cairns; Tamara Hershey; Joel S. Perlmutter

Clinicopathologic studies of Parkinson disease dementia (PDD) and dementia with Lewy bodies (DLB) commonly reveal abnormal β‐amyloid deposition in addition to diffuse Lewy bodies (α‐synuclein aggregates), but the relationship among these neuropathologic features and the development of dementia in these disorders remains uncertain. The purpose of this study was to determine whether amyloid‐β deposition detected by PET imaging with Pittsburgh Compound B (PIB) distinguishes clinical subtypes of Lewy body‐associated disorders. Nine healthy controls, 8 PD with no cognitive impairment, 9 PD with mild cognitive impairment, 6 DLB, and 15 PDD patients underwent [11C]‐PIB positron emission tomography imaging, clinical examination, and cognitive testing. The binding potential (BP) of PIB for predefined regions and the mean cortical BP (MCBP) were calculated for each participant. Annual longitudinal follow‐up and postmortem examinations were performed on a subset of participants. Regional PIB BPs and the proportion of individuals with abnormally elevated MCBP were not significantly different across participant groups. Elevated PIB binding was associated with worse global cognitive impairment in participants with Lewy body disorders but was not associated with any other clinical or neuropsychological features, including earlier onset or faster rate of progression of cognitive impairment. These results suggest that the presence of fibrillar amyloid‐β does not distinguish between clinical subtypes of Lewy body‐associated disorders, although larger numbers are needed to more definitively rule out this association. Amyloid‐β may modify the severity of global cognitive impairment in individuals with Lewy body‐associated dementia.


Brain | 2010

Mapping Go–No-Go performance within the subthalamic nucleus region

Tamara Hershey; Meghan C. Campbell; Tom O. Videen; Heather M. Lugar; Patrick M. Weaver; Johanna M. Hartlein; Morvarid Karimi; Samer D. Tabbal; Joel S. Perlmutter

The basal ganglia are thought to be important in the selection of wanted and the suppression of unwanted motor patterns according to explicit rules (i.e. response inhibition). The subthalamic nucleus has been hypothesized to play a particularly critical role in this function. Deep brain stimulation of the subthalamic nucleus in individuals with Parkinsons disease has been used to test this hypothesis, but results have been variable. Based on current knowledge of the anatomical organization of the subthalamic nucleus, we propose that the location of the contacts used in deep brain stimulation could explain variability in the effects of deep brain stimulation of the subthalamic nucleus on response inhibition tasks. We hypothesized that stimulation affecting the dorsal subthalamic nucleus (connected to the motor cortex) would be more likely to affect motor symptoms of Parkinsons disease, and stimulation affecting the ventral subthalamic nucleus (connected to higher order cortical regions) would be more likely to affect performance on a response inhibition task. We recruited 10 individuals with Parkinsons disease and bilateral deep brain stimulation of the subthalamic nucleus with one contact in the dorsal and another in the ventral subthalamic region on one side of the brain. Patients were tested with a Go-No-Go task and a motor rating scale in three conditions: stimulation off, unilateral dorsal stimulation and unilateral ventral stimulation. Both dorsal and ventral stimulation improved motor symptoms, but only ventral subthalamic stimulation affected Go-No-Go performance, decreasing hits and increasing false alarms, but not altering reaction times. These results suggest that the ventral subthalamic nucleus is involved in the balance between appropriate selection and inhibition of prepotent responses in cognitive paradigms, but that a wide area of the subthalamic nucleus region is involved in the motor symptoms of Parkinsons disease. This finding has implications for resolving inconsistencies in previous research, highlights the role of the ventral subthalamic nucleus region in response inhibition and suggests an approach for the clinical optimization of deep brain stimulation of the subthalamic nucleus for both motor and cognitive functions.


The Journal of Neuroscience | 2010

Quantification of Indirect Pathway Inhibition by the Adenosine A2a Antagonist SYN115 in Parkinson Disease

Kevin J. Black; Jonathan M. Koller; Meghan C. Campbell; Debra A. Gusnard; Stephen I. Bandak

Adenosine A2a receptor antagonists reduce symptom severity in Parkinson disease (PD) and animal models. Rodent studies support the hypothesis that A2a antagonists produce this benefit by reducing the inhibitory output of the basal ganglia indirect pathway. One way to test this hypothesis in humans is to quantify regional pharmacodynamic responses with cerebral blood flow (CBF) imaging. That approach has also been proposed as a tool to accelerate pharmaceutical dose finding, but has not yet been applied in humans to drugs in development. We successfully addressed both these aims with a perfusion magnetic resonance imaging (MRI) study of the novel adenosine A2a antagonist SYN115. During a randomized, double-blind, placebo-controlled, crossover study in 21 PD patients on levodopa but no agonists, we acquired pulsed arterial spin labeling MRI at the end of each treatment period. SYN115 produced a highly significant decrease in thalamic CBF, consistent with reduced pallidothalamic inhibition via the indirect pathway. Similar decreases occurred in cortical regions whose activity decreases with increased alertness and externally focused attention, consistent with decreased self-reported sleepiness on SYN115. Remarkably, we also derived quantitative pharmacodynamic parameters from the CBF responses to SYN115. These results suggested that the doses tested were on the low end of the effective dose range, consistent with clinical data reported separately. We conclude that (1) SYN115 enters the brain and exerts dose-dependent regional effects, (2) the most prominent of these effects is consistent with deactivation of the indirect pathway as predicted by preclinical studies; and (3) perfusion MRI can provide rapid, quantitative, clinically relevant dose-finding information for pharmaceutical development.


Neuropsychologia | 2008

Neural correlates of STN DBS-induced cognitive variability in Parkinson disease

Meghan C. Campbell; Morvarid Karimi; Patrick M. Weaver; Jenny Wu; Dana C. Perantie; Nina A Golchin; Samer D. Tabbal; Joel S. Perlmutter; Tamara Hershey

BACKGROUND Although deep brain stimulation of the subthalamic nucleus (STN DBS) in Parkinson disease (PD) improves motor function, it has variable effects on working memory (WM) and response inhibition (RI) performance. The purpose of this study was to determine the neural correlates of STN DBS-induced variability in cognitive performance. METHODS We measured bilateral STN DBS-induced blood flow changes (PET and [(15)O]-water on one day) in the supplementary motor area (SMA), dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC), and right inferior frontal cortex (rIFC) as well as in exploratory ROIs defined by published meta-analyses. STN DBS-induced WM and RI changes (Spatial Delayed Response and Go-No-Go on the next day) were measured in 24 PD participants. On both days, participants withheld PD medications overnight and conditions (OFF vs. ON) were administered in a counterbalanced, double-blind manner. RESULTS As predicted, STN DBS-induced DLPFC blood flow change correlated with change in WM, but not RI performance. Furthermore, ACC blood flow change correlated with change in RI but not WM performance. For both relationships, increased blood flow related to decreased cognitive performance in response to STN DBS. Of the exploratory regions, only blood flow changes in DLPFC and ACC were correlated with performance. CONCLUSIONS These results demonstrate that variability in the effects of STN DBS on cognitive performance relates to STN DBS-induced cortical blood flow changes in DLPFC and ACC. This relationship highlights the need to further understand the factors that mediate the variability in neural and cognitive response to STN DBS.


Annals of clinical and translational neurology | 2015

Dopaminergic, serotonergic, and noradrenergic deficits in Parkinson disease

Chandana Buddhala; Susan K. Loftin; Brandon M. Kuley; Nigel J. Cairns; Meghan C. Campbell; Joel S. Perlmutter; Paul T. Kotzbauer

People with Parkinson disease (PD) frequently develop dementia, which is associated with neocortical deposition of alpha‐synuclein (α‐syn) in Lewy bodies and Lewy neurites. In addition, neuronal loss and deposition of aggregated α‐syn also occur in multiple subcortical nuclei that project to neocortical, limbic, and basal ganglia regions. Therefore, we quantified regional deficits in innervation from these PD‐affected subcortical nuclei, by measuring the neurotransmitters and neurotransmitter transporter proteins originating from projections of dopaminergic neurons in substantia nigra pars compacta, serotonergic neurons in dorsal raphé nuclei, noradrenergic neurons in locus coeruleus, and cholinergic neurons in nucleus basalis of Meynert.


Annals of Neurology | 2014

Functional anatomy of subthalamic nucleus stimulation in Parkinson disease

Sarah A. Eisenstein; Jonathan M. Koller; Kathleen D Black; Meghan C. Campbell; Heather M. Lugar; Mwiza Ushe; Samer D. Tabbal; Morvarid Karimi; Tamara Hershey; Joel S. Perlmutter; Kevin J. Black

We developed a novel method to map behavioral effects of deep brain stimulation (DBS) across a 3‐dimensional brain region and to assign statistical significance after stringent type I error correction. This method was applied to behavioral changes in Parkinson disease (PD) induced by subthalamic nucleus (STN) DBS to determine whether these responses depended on anatomical location of DBS.


Neurobiology of Aging | 2015

Correlation between decreased CSF α-synuclein and Aβ1–42 in Parkinson disease

Chandana Buddhala; Meghan C. Campbell; Joel S. Perlmutter; Paul T. Kotzbauer

Accumulation of misfolded α-synuclein (α-syn) protein in Lewy bodies and neurites is the cardinal pathologic feature of Parkinson disease (PD), but abnormal deposition of other proteins may also play a role. Cerebrospinal fluid (CSF) levels of proteins known to accumulate in PD may provide insight into disease-associated changes in protein metabolism and their relationship to disease progression. We measured CSF α-syn, amyloid β₁₋₄₂ (Aβ₁₋₄₂), and tau from 77 nondemented PD and 30 control participants. CSF α-syn and Aβ₁₋₄₂ were significantly lower in PD compared with controls. In contrast with increased CSF tau in Alzheimer disease, CSF tau did not significantly differ between PD and controls. CSF protein levels did not significantly correlate with ratings of motor function or performance on neuropsychological testing. As expected, CSF Aβ₁₋₄₂ inversely correlated with [(11)C]-Pittsburgh compound B (PiB) mean cortical binding potential, with PiB(+) PD participants having lower CSF Aβ₁₋₄₂ compared with PiB(-) PD participants. Furthermore, CSF α-syn positively correlated with Aβ₁₋₄₂ in PD participants but not in controls, suggesting a pathophysiologic connection between the metabolisms of these proteins in PD.


Journal of Neural Transmission | 2014

A quantitative study of α-synuclein pathology in fifteen cases of dementia associated with Parkinson disease

Richard A. Armstrong; Paul T. Kotzbauer; Joel S. Perlmutter; Meghan C. Campbell; Kyle M. Hurth; Robert E. Schmidt; Nigel J. Cairns

The α-synuclein-immunoreactive pathology of dementia associated with Parkinson disease (DPD) comprises Lewy bodies (LB), Lewy neurites (LN), and Lewy grains (LG). The densities of LB, LN, LG together with vacuoles, neurons, abnormally enlarged neurons (EN), and glial cell nuclei were measured in fifteen cases of DPD. Densities of LN and LG were up to 19 and 70 times those of LB, respectively, depending on region. Densities were significantly greater in amygdala, entorhinal cortex (EC), and sectors CA2/CA3 of the hippocampus, whereas middle frontal gyrus, sector CA1, and dentate gyrus were least affected. Low densities of vacuoles and EN were recorded in most regions. There were differences in the numerical density of neurons between regions, but no statistical difference between patients and controls. In the cortex, the density of LB and vacuoles was similar in upper and lower laminae, while the densities of LN and LG were greater in upper cortex. The densities of LB, LN, and LG were positively correlated. Principal components analysis suggested that DPD cases were heterogeneous with pathology primarily affecting either hippocampus or cortex. The data suggest in DPD: (1) ratio of LN and LG to LB varies between regions, (2) low densities of vacuoles and EN are present in most brain regions, (3) degeneration occurs across cortical laminae, upper laminae being particularly affected, (4) LB, LN and LG may represent degeneration of the same neurons, and (5) disease heterogeneity may result from variation in anatomical pathway affected by cell-to-cell transfer of α-synuclein.


Journal of Neuroscience Methods | 2008

Validation of a fiducial-based atlas localization method for deep brain stimulation contacts in the area of the subthalamic nucleus.

Tom O. Videen; Meghan C. Campbell; Samer D. Tabbal; Morvarid Karimi; Tamara Hershey; Joel S. Perlmutter

Differences in the location of active contacts with respect to the subthalamic nucleus (STN) may account for much variability in motor, psychiatric and cognitive responses to deep brain stimulation (DBS) in Parkinson disease (PD) patients. Because localization of STN based on hypointensity in T2-weighted MR images is unreliable and further limited by artifacts from the metal electrodes, we developed and validated a method to transform brain images into stereotactic space [Mai JK, Assheuer J, Paxinos G. Atlas of the Human Brain, 2nd ed. San Diego: Elsevier Academic; 2004] using reliably-identified anatomic fiducials identified in high-resolution T2-weighted pre-operative MR images. Average intraclass correlation between two raters for 29 PD patients was 0.93 for those fiducials used to define the atlas. Accuracy of the registration was tested by comparing the rater-identified centers of the red nuclei with their predicted locations from the fiducial-based atlas transformation. Mean discrepancies were 0.1, 0.9, and 0.0mm (x, y, z) with standard deviations of 0.9, 0.7 and 1.1mm, respectively. Because post-operative determination of contact location with respect to the STN is necessary due to possible shifting of electrodes during surgical placement, we identified active contacts on post-operative CT images and transformed their locations into stereotactic space. This method provides an accurate and reliable means for STN DBS contact localization.


Neurology | 2013

Principal component analysis of PiB distribution in Parkinson and Alzheimer diseases

Meghan C. Campbell; Joanne Markham; Hubert Flores; Johanna M. Hartlein; Alison Goate; Nigel J. Cairns; Tom O. Videen; Joel S. Perlmutter

Objective: To use principal component analyses (PCA) of Pittsburgh compound B (PiB) PET imaging to determine whether the pattern of in vivo β-amyloid (Aβ) in Parkinson disease (PD) with cognitive impairment is similar to the pattern found in symptomatic Alzheimer disease (AD). Methods: PiB PET scans were obtained from participants with PD with cognitive impairment (n = 53), participants with symptomatic AD (n = 35), and age-matched controls (n = 67). All were assessed using the Clinical Dementia Rating and APOE genotype was determined in 137 participants. PCA was used to 1) determine the PiB binding pattern in AD, 2) determine a possible unique PD pattern, and 3) directly compare the PiB binding patterns in PD and AD groups. Results: The first 2 principal components (PC1 and PC2) significantly separated the AD and control participants (p < 0.001). Participants with PD with cognitive impairment also were significantly different from participants with symptomatic AD on both components (p < 0.001). However, there was no difference between PD and controls on either component. Even those participants with PD with elevated mean cortical binding potentials were significantly different from participants with AD on both components. Conclusion: Using PCA, we demonstrated that participants with PD with cognitive impairment do not exhibit the same PiB binding pattern as participants with AD. These data suggest that Aβ deposition may play a different pathophysiologic role in the cognitive impairment of PD compared to that in AD.

Collaboration


Dive into the Meghan C. Campbell's collaboration.

Top Co-Authors

Avatar

Joel S. Perlmutter

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Tamara Hershey

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Samer D. Tabbal

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Kevin J. Black

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Morvarid Karimi

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jonathan M. Koller

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Johanna M. Hartlein

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Heather M. Lugar

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Mwiza Ushe

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Paul T. Kotzbauer

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge