Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Meghan E. Boyer is active.

Publication


Featured researches published by Meghan E. Boyer.


Proceedings of the National Academy of Sciences of the United States of America | 2003

GATA-1-dependent transcriptional repression of GATA-2 via disruption of positive autoregulation and domain-wide chromatin remodeling

Jeffrey A. Grass; Meghan E. Boyer; Saumen Pal; Jing Wu; Mitchell J. Weiss; Emery H. Bresnick

Interplay among GATA transcription factors is an important determinant of cell fate during hematopoiesis. Although GATA-2 regulates hematopoietic stem cell function, mechanisms controlling GATA-2 expression are undefined. Of particular interest is the repression of GATA-2, because sustained GATA-2 expression in hematopoietic stem and progenitor cells alters hematopoiesis. GATA-2 transcription is derepressed in erythroid precursors lacking GATA-1, but the underlying mechanisms are unknown. Using chromatin immunoprecipitation analysis, we show that GATA-1 binds a highly restricted upstream region of the ≈70-kb GATA-2 domain, despite >80 GATA sites throughout the domain. GATA-2 also binds this region in the absence of GATA-1. Genetic complementation studies in GATA-1-null cells showed that GATA-1 rapidly displaces GATA-2, which is coupled to transcriptional repression. GATA-1 also displaces CREB-binding protein (CBP), despite the fact that GATA-1 binds CBP in other contexts. Repression correlates with reduced histone acetylation domain-wide, but not altered methylation of histone H3 at lysine 4. The GATA factor-binding region exhibited cell-type-specific enhancer activity in transient transfection assays. We propose that GATA-1 instigates GATA-2 repression by means of disruption of positive autoregulation, followed by establishment of a domain-wide repressive chromatin structure. Such a mechanism is predicted to be critical for the control of hematopoiesis.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Cooperative activities of hematopoietic regulators recruit RNA polymerase II to a tissue-specific chromatin domain

Kirby D. Johnson; Jeffrey A. Grass; Meghan E. Boyer; Carol M. Kiekhaefer; Gerd A. Blobel; Mitchell J. Weiss; Emery H. Bresnick

The hematopoietic transcription factor GATA-1 regulates erythropoiesis and β-globin expression. Although consensus GATA-1 binding sites exist throughout the murine β-globin locus, we found that GATA-1 discriminates among these sites in vivo. Conditional expression of GATA-1 in GATA-1-null cells recapitulated the occupancy pattern. GATA-1 induced RNA polymerase II (pol II) recruitment to subregions of the locus control region and to the β-globin promoters. The hematopoietic factor NF-E2 cooperated with GATA-1 to recruit pol II to the promoters. We propose that only when GATA-1 attracts pol II to the locus control region can pol II access the promoter in a NF-E2-dependent manner.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Hematopoietic-specific activators establish an overlapping pattern of histone acetylation and methylation within a mammalian chromatin domain

Carol M. Kiekhaefer; Jeffrey A. Grass; Kirby D. Johnson; Meghan E. Boyer; Emery H. Bresnick

Posttranslational modification of histones through acetylation, methylation, and phosphorylation is a common mode of regulating chromatin structure and, therefore, diverse nuclear processes. One such modification, methylated histone H3 at lysine-4 (H3-meK4), colocalizes with hyperacetylated histones H3 and H4 in mammalian chromatin. Whereas activators directly recruit acetyltransferases, the process whereby H3-meK4 is established is unknown. We tested whether the hematopoietic-specific activators NF-E2 and GATA-1, which mediate transactivation of the β-globin genes, induce both histone acetylation and H3-meK4. Through the use of NF-E2- and GATA-1-null cell lines, we show that both activators induce H3 acetylation at the promoter upon transcriptional activation. However, analysis of H3-mek4 revealed that NF-E2 and GATA-1 differentially regulate chromatin modifications at the βmajor promoter. NF-E2, but not GATA-1, induces H3-meK4 at the promoter. Thus, under conditions in which NF-E2 and GATA-1 activate the transcription of an endogenous gene at least 570-fold, these activators differ in their capacity to induce H3-meK4. Despite strong H3-meK4 at hypersensitive site 2 of the upstream locus control region, neither factor was required to establish H3-meK4 at this site. These results support a model in which multiple tissue-specific activators collectively function to assemble a composite histone modification pattern, consisting of overlapping histone acetylation and methylation. As GATA-1 induced H3 acetylation, but not H3-meK4, at the promoter, H3 acetylation and H3-meK4 components of a composite histone modification pattern can be established independently.


Methods of Molecular Biology | 2004

Measurement of Protein-DNA Interactions In Vivo by Chromatin Immunoprecipitation

Hogune Im; Jeffrey A. Grass; Kirby D. Johnson; Meghan E. Boyer; Jing Wu; Emery H. Bresnick

Elucidating mechanisms controlling nuclear processes requires an understanding of the nucleoprotein structure of genes at endogenous chromosomal loci. Traditional approaches to measuring protein-DNA interactions in vitro have often failed to provide insights into physiological mechanisms. Given that most transcription factors interact with simple DNA sequence motifs, which are abundantly distributed throughout a genome, it is essential to pinpoint the small subset of sites bound by factors in vivo. Signaling mechanisms induce the assembly and modulation of complex patterns of histone acetylation, methylation, phosphorylation, and ubiquitination, which are crucial determinants of chromatin accessibility. These seemingly complex issues can be directly addressed by a powerful methodology termed the chromatin immunoprecipitation (ChIP) assay. ChIP analysis involves covalently trapping endogenous proteins at chromatin sites, thereby yielding snapshots of protein-DNA interactions and histone modifications within living cells. The chromatin is sonicated to generate small fragments, and an immunoprecipitation is conducted with an antibody against the desired factor or histone modification. Crosslinks are reversed, and polymerase chain reaction (PCR) is used to assess whether DNA sequences are recovered immune-specifically. Chromatin-domain scanning coupled with quantitative analysis is a powerful means of dissecting mechanisms by which signaling pathways target genes within a complex genome.


Journal of Experimental Medicine | 2013

Gata2 cis-element is required for hematopoietic stem cell generation in the mammalian embryo

Xin Gao; Kirby D. Johnson; Yuan-I Chang; Meghan E. Boyer; Colin N. Dewey; Jing Zhang; Emery H. Bresnick

Cis-element requirement for the emergence of HSCs in the AGM and for hemogenic endothelium to generate HSC-containing c-Kit+ cell clusters.


Molecular and Cellular Biology | 2008

Molecular Hallmarks of Endogenous Chromatin Complexes Containing Master Regulators of Hematopoiesis

Ryan J. Wozniak; Sunduz Keles; Jesse J. Lugus; Ken H. Young; Meghan E. Boyer; Tuan M. Tran; Kyunghee Choi; Emery H. Bresnick

ABSTRACT Combinatorial interactions among trans-acting factors establish transcriptional circuits that orchestrate cellular differentiation, survival, and development. Unlike circuits instigated by individual factors, efforts to identify gene ensembles controlled by multiple factors simultaneously are in their infancy. A paradigm has emerged in which the important regulators of hematopoiesis GATA-1 and GATA-2 function combinatorially with Scl/TAL1, another key regulator of hematopoiesis. The underlying mechanism appears to involve preferential assembly of a multimeric complex on a composite DNA element containing WGATAR and E-box motifs. Based on this paradigm, one would predict that GATA-2 and Scl/TAL1 would commonly co-occupy such composite elements in cells. However, chromosome-wide analyses indicated that the vast majority of conserved composite elements were occupied by neither GATA-2 nor Scl/TAL1. Intriguingly, the highly restricted set of GATA-2-occupied composite elements had characteristic molecular hallmarks, specifically Scl/TAL1 occupancy, a specific epigenetic signature, specific neighboring cis elements, and preferential enhancer activity in GATA-2-expressing cells. Genes near the GATA-2-Scl/TAL1-occupied composite elements were regulated by GATA-2 or GATA-1, and therefore these fundamental studies on combinatorial transcriptional mechanisms were also leveraged to discover novel GATA factor-mediated cell regulatory pathways.


Journal of Biological Chemistry | 2007

Context-dependent GATA Factor Function COMBINATORIAL REQUIREMENTS FOR TRANSCRIPTIONAL CONTROL IN HEMATOPOIETIC AND ENDOTHELIAL CELLS

Ryan J. Wozniak; Meghan E. Boyer; Jeffrey A. Grass; Youngsook Lee; Emery H. Bresnick

GATA factors are fundamental components of developmentally important transcriptional networks. By contrast to common mechanisms in which transacting factors function directly at promoters, the hematopoietic GATA factors GATA-1 and GATA-2 often assemble dispersed complexes over broad chromosomal regions. For example, GATA-1 and GATA-2 occupy five conserved regions over ∼100 kb of the Gata2 locus in the transcriptionally repressed and active states, respectively, in erythroid cells. Since it is unknown whether the individual complexes exert qualitatively distinct or identical functions to regulate Gata2 transcription in vivo, we compared the activity of the -3.9 and +9.5 kb sites of the Gata2 locus in transgenic mice. The +9.5 site functioned as an autonomous enhancer in the endothelium and fetal liver of embryonic day 11 embryos, whereas the -3.9 site lacked such activity. Mechanistic studies demonstrated critical requirements for a GATA motif and a neighboring E-box within the +9.5 site for enhancer activity in endothelial and hematopoietic cells. Surprisingly, whereas this GATA-E-box composite motif was sufficient for enhancer activity in an erythroid precursor cell line, its enhancer function in primary human endothelial cells required additional regulatory modules. These results identify the first molecular determinant of Gata2 transcription in vascular endothelium, composed of a core enhancer module active in both endothelial and hematopoietic cells and regulatory modules preferentially required in endothelial cells.


Molecular Cell | 2009

Controlling Hematopoiesis through Sumoylation-Dependent Regulation of a GATA Factor

Hsiang-Ying Lee; Kirby D. Johnson; Tohru Fujiwara; Meghan E. Boyer; Shin-Il Kim; Emery H. Bresnick

GATA factors establish transcriptional networks that control fundamental developmental processes. Whereas the regulator of hematopoiesis GATA-1 is subject to multiple posttranslational modifications, how these modifications influence GATA-1 function at endogenous loci is unknown. We demonstrate that sumoylation of GATA-1 K137 promotes transcriptional activation only at target genes requiring the coregulator Friend of GATA-1 (FOG-1). A mutation of GATA-1 V205G that disrupts FOG-1 binding and K137 mutations yielded similar phenotypes, although sumoylation was FOG-1 independent, and FOG-1 binding did not require sumoylation. Both mutations dysregulated GATA-1 chromatin occupancy at select sites, FOG-1-dependent gene expression, and were rescued by tethering SUMO-1. While FOG-1- and SUMO-1-dependent genes migrated away from the nuclear periphery upon erythroid maturation, FOG-1- and SUMO-1-independent genes persisted at the periphery. These results illustrate a mechanism that controls trans-acting factor function in a locus-specific manner, and differentially regulated members of the target gene ensemble reside in distinct subnuclear compartments.


Journal of Biological Chemistry | 2011

Relocalizing genetic loci into specific subnuclear neighborhoods.

Hsiang-Ying Lee; Kirby D. Johnson; Meghan E. Boyer; Emery H. Bresnick

A poorly understood problem in genetics is how the three-dimensional organization of the nucleus contributes to establishment and maintenance of transcriptional networks. Genetic loci can reside in chromosome “territories” and undergo dynamic changes in subnuclear positioning. Such changes appear to be important for regulating transcription, although many questions remain regarding how loci reversibly transit in and out of their territories and the functional significance of subnuclear transitions. We addressed this issue using GATA-1, a master regulator of hematopoiesis implicated in human leukemogenesis, which often functions with the coregulator Friend of GATA-1 (FOG-1). In a genetic complementation assay in GATA-1-null cells, GATA-1 expels FOG-1-dependent target genes from the nuclear periphery during erythroid maturation, but the underlying mechanisms are unknown. We demonstrate that GATA-1 induces extrusion of the β-globin locus away from its chromosome territory at the nuclear periphery, and extrusion precedes the maturation-associated transcriptional surge and morphological transition. FOG-1 and its interactor Mi-2β, a chromatin remodeling factor commonly linked to repression, were required for locus extrusion. Erythroid Krüppel-like factor, a pivotal regulator of erythropoiesis that often co-occupies chromatin with GATA-1, also promoted locus extrusion. Disruption of transcriptional maintenance did not restore the locus subnuclear position that preceded activation. These results lead to a model for how a master developmental regulator relocalizes a locus into a new subnuclear neighborhood that is permissive for high level transcription as an early step in establishing a cell type-specific genetic network. Alterations in the regulatory milieu can abrogate maintenance without reversion of locus residency back to its original neighborhood.


Journal of Cell Biology | 2006

An antiangiogenic neurokinin-B/thromboxane A2 regulatory axis

Saumen Pal; Jing Wu; Justin K. Murray; Samuel H. Gellman; Michele A. Wozniak; Patricia J. Keely; Meghan E. Boyer; Timothy M. Gomez; Sean M. Hasso; John F. Fallon; Emery H. Bresnick

Establishment of angiogenic circuits that orchestrate blood vessel development and remodeling requires an exquisite balance between the activities of pro- and antiangiogenic factors. However, the logic that permits complex signal integration by vascular endothelium is poorly understood. We demonstrate that a “neuropeptide,” neurokinin-B (NK-B), reversibly inhibits endothelial cell vascular network assembly and opposes angiogenesis in the chicken chorioallantoic membrane. Disruption of endogenous NK-B signaling promoted angiogenesis. Mechanistic analyses defined a multicomponent pathway in which NK-B signaling converges upon cellular processes essential for angiogenesis. NK-B−mediated ablation of Ca2+ oscillations and elevation of 3′–5′ cyclic adenosine monophosphate (cAMP) reduced cellular proliferation, migration, and vascular endothelial growth factor receptor expression and induced the antiangiogenic protein calreticulin. Whereas NK-B initiated certain responses, other activities required additional stimuli that increase cAMP. Although NK-B is a neurotransmitter/ neuromodulator and NK-B overexpression characterizes the pregnancy-associated disorder preeclampsia, NK-B had not been linked to vascular remodeling. These results establish a conserved mechanism in which NK-B instigates multiple activities that collectively oppose vascular remodeling.

Collaboration


Dive into the Meghan E. Boyer's collaboration.

Top Co-Authors

Avatar

Emery H. Bresnick

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Kirby D. Johnson

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jeffrey A. Grass

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jing Zhang

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jing Wu

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Ryan J. Wozniak

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xin Gao

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Yuan-I Chang

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Carol M. Kiekhaefer

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge