Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Meghan K. Eberhardt is active.

Publication


Featured researches published by Meghan K. Eberhardt.


Journal of Immunology | 2007

Exposure of Myeloid Dendritic Cells to Exogenous or Endogenous IL-10 during Maturation Determines Their Longevity

W. L. William Chang; Nicole Baumgarth; Meghan K. Eberhardt; C. Y. Daniel Lee; Colin A. Baron; Jeff P. Gregg; Peter A. Barry

Dendritic cells (DC) are essential for the initiation of primary adaptive immune responses, and their functionality is strongly down-modulated by IL-10. Both innate and adaptive immune signals trigger the up-regulation of antiapoptotic Bcl-2 family members to facilitate the survival of DCs after maturation. However, whether IL-10 alters the expression of apoptotic-related genes in maturing DCs has not been determined. In this study, we demonstrate that spontaneous apoptosis rapidly occurred in myeloid DCs exposed to exogenous IL-10 upon maturation. Microarray analysis indicates that IL-10 suppressed the induction of three antiapoptotic genes, bcl-2, bcl-x, and bfl-1, which was coincident with the increased sensitivity of mature DCs to spontaneous apoptosis. IL-10 markedly inhibited the accumulation of steady state Bcl-2 message and protein in myeloid DCs activated through TLRs or TNFR family members, whereas exogenous IL-10 affected Bcl-xL expression in a moderate manner. In contrast, bcl-2 expression of plasmacytoid DCs was less sensitive to the effects of IL-10. We further show that autocrine IL-10 significantly limited the longevity of myeloid DCs and altered the expression kinetics of Bcl-2 but not Bcl-xL in maturing DCs. We conclude that the degree of IL-10 exposure and/or the level of endogenous IL-10 production upon myeloid DC maturation play a critical role in determining DC longevity. This regulatory mechanism of IL-10 is associated with the dynamic control of antiapoptotic Bcl-2 proteins.


Journal of Virology | 2007

Immunogenicity and Protective Efficacy of DNA Vaccines Expressing Rhesus Cytomegalovirus Glycoprotein B, Phosphoprotein 65-2, and Viral Interleukin-10 in Rhesus Macaques

Yujuan Yue; Amitinder Kaur; Meghan K. Eberhardt; Nadine Kassis; Shan Shan Zhou; Alice F. Tarantal; Peter A. Barry

ABSTRACT Rhesus cytomegalovirus (RhCMV) infection of macaques exhibits strong similarities to human CMV (HCMV) persistence and pathogenesis. The immunogenicity of DNA vaccines encoding three RhCMV proteins (a truncated version of glycoprotein B lacking the transmembrane region and endodomain [gBΔTM], phosphoprotein 65-2 [pp65-2], and viral interleukin-10 [vIL-10]) was evaluated in rhesus macaques. Two groups of monkeys (four per group) were genetically immunized four times with a mixture of either pp65-2 and gBΔTM or pp65-2, vIL-10, and gBΔTM. The vaccinees developed anti-gB and anti-pp65-2 antibodies in addition to pp65-2 cellular responses after the second booster immunization, with rapid responses observed with subsequent DNA injections. Weak vIL-10 immune responses were detected in two of the four immunized animals. Neutralizing antibodies were detected in seven monkeys, although titers were weak compared to those observed in naturally infected animals. The immunized monkeys and naïve controls were challenged intravenously with 105 PFU of RhCMV. Anamnestic binding and neutralizing antibody responses were observed 1 week postchallenge in the vaccinees. DNA vaccination-induced immune responses significantly decreased peak viral loads in the immunized animals compared to those in the controls. No difference in peak viral loads was observed between the pp65-2/gBΔTM DNA- and pp65-2/vIL-10/gBΔTM-vaccinated groups. Antibody responses to nonvaccine antigens were lower postchallenge in both vaccine groups than in the controls, suggesting long-term control of RhCMV protein expression. These data demonstrated that DNA vaccines targeting the RhCMV homologues of HCMV gB and pp65 altered the course of acute and persistent RhCMV infection in a primate host.


Medical Microbiology and Immunology | 2008

Evaluation of recombinant modified vaccinia Ankara virus-based rhesus cytomegalovirus vaccines in rhesus macaques

Yujuan Yue; Zhongde Wang; Kristina Abel; Jinliang Li; Lisa Strelow; Angelo Mandarino; Meghan K. Eberhardt; Kimberli A. Schmidt; Don J. Diamond; Peter A. Barry

A vaccine consisting of rhesus cytomegalovirus (RhCMV) pp65-2, gB and IE1 expressed via modified vaccinia Ankara (MVA) was evaluated in rhesus macaques with or without prior priming with expression plasmids for the same antigens. Following two MVA treatments, comparable levels of anti-gB, pp65-2 and neutralizing antibody responses, and pp65-2- and IE1-specific cellular immune responses were detected in both vaccinated groups. Similar reductions in plasma peak viral loads were observed in these groups compared to untreated controls. This study demonstrates the immunogenicity and protective efficacy of rMVA-based RhCMV subunit vaccines in a primate host and warrants further investigation to improve the efficacy of subunit vaccines against CMV.


Vaccine | 2008

A heterologous DNA prime/protein boost immunization strategy for rhesus cytomegalovirus

Kristina Abel; Lisa Strelow; Yujuan Yue; Meghan K. Eberhardt; Kimberli A. Schmidt; Peter A. Barry

A previous study in nonhuman primates demonstrated that genetic immunization against the rhesus cytomegalovirus phosphoprotein 65-2 (pp65-2) and glycoprotein B (gB) antigens both stimulated antigen-specific antibodies and CD8 T cell responses, and significantly reduced plasma viral loads following intravenous challenge with RhCMV. It was also noted in this study that weak CD4 T cell and neutralizing antibody responses were generated by DNA alone. To broaden the type of immune responses, a DNA prime/protein boost strategy was used in seronegative macaques, consisting of four DNA immunizations against pp65-2, gB, and immediate-early 1 (IE1), followed by two boosts with formalin-inactivated RhCMV virions. This heterologous prime/boost strategy elicited robust antigen-specific CD4 and CD8 T cell responses in addition to biologically relevant neutralizing antibody titers. Animals were challenged with RhCMV delivered into four sites via a subcutaneous route. Skin biopsies of one of the inoculation sites 7 days post challenge revealed marked differences in the level of RhCMV replication between the vaccinated and control monkeys. Whereas the inoculation site in the controls was noted for a prominent inflammatory response and numerous cytomegalic, antigen-positive (IE1) cells, the inoculation site in the vaccinees was characterized by an absence of inflammation and antigen-positive cells. All five vaccinees developed robust recall responses to viral antigens, and four of them exhibited long-term viral immune responses consistent with effective control of viral expression and replication. These results demonstrate that a heterologous DNA prime/protein boost strategy greatly expands the breadth of antiviral immune responses and greatly reduces the level of viral replication at the primary site of challenge infection.


PLOS ONE | 2011

Design and analysis of rhesus cytomegalovirus IL-10 mutants as a model for novel vaccines against human cytomegalovirus

Naomi J. Logsdon; Meghan K. Eberhardt; Christopher E. Allen; Peter A. Barry; Mark R. Walter

Background Human cytomegalovirus (HCMV) expresses a viral ortholog (CMVIL-10) of human cellular interleukin-10 (cIL-10). Despite only ∼26% amino acid sequence identity, CMVIL-10 exhibits comparable immunosuppressive activity with cIL-10, attenuates HCMV antiviral immune responses, and contributes to lifelong persistence within infected hosts. The low sequence identity between CMVIL-10 and cIL-10 suggests vaccination with CMVIL-10 may generate antibodies that specifically neutralize CMVIL-10 biological activity, but not the cellular cytokine, cIL-10. However, immunization with functional CMVIL-10 might be detrimental to the host because of its immunosuppressive properties. Methods and Findings Structural biology was used to engineer biologically inactive mutants of CMVIL-10 that would, upon vaccination, elicit a potent immune response to the wild-type viral cytokine. To test the designed proteins, the mutations were incorporated into the rhesus cytomegalovirus (RhCMV) ortholog of CMVIL-10 (RhCMVIL-10) and used to vaccinate RhCMV-infected rhesus macaques. Immunization with the inactive RhCMVIL-10 mutants stimulated antibodies against wild-type RhCMVIL-10 that neutralized its biological activity, but did not cross-react with rhesus cellular IL-10. Conclusion This study demonstrates an immunization strategy to neutralize RhCMVIL-10 biological activity using non-functional RhCMVIL-10 antigens. The results provide the methodology for targeting CMVIL-10 in vaccine, and therapeutic strategies, to nullify HCMVs ability to (1) skew innate and adaptive immunity, (2) disseminate from the site of primary mucosal infection, and (3) establish a lifelong persistent infection.


Journal of Virology | 2013

Vaccination against a Virus-Encoded Cytokine Significantly Restricts Viral Challenge

Meghan K. Eberhardt; Ashlesha Deshpande; W. L. William Chang; Stephen W. Barthold; Mark R. Walter; Peter A. Barry

ABSTRACT Identification of immune correlates of protection for viral vaccines is complicated by multiple factors, but there is general consensus on the importance of antibodies that neutralize viral attachment to susceptible cells. Development of new viral vaccines has mostly followed this neutralizing antibody paradigm, but as a recent clinical trial of human cytomegalovirus (HCMV) vaccination demonstrated, this singular approach can yield limited protective efficacy. Since HCMV devotes >50% of its coding capacity to proteins that modulate host immunity, it is hypothesized that expansion of vaccine targets to include this part of the viral proteome will disrupt viral natural history. HCMV and rhesus cytomegalovirus (RhCMV) each encode an ortholog to the cellular interleukin-10 (cIL-10) cytokine: cmvIL-10 and rhcmvIL10, respectively. Despite extensive sequence divergence from their hosts cIL-10, each viral IL-10 retains nearly identical functionality to cIL-10. Uninfected rhesus macaques were immunized with engineered, nonfunctional rhcmvIL-10 variants, which were constructed by site-directed mutagenesis to abolish binding to the cIL-10 receptor. Vaccinees developed antibodies that neutralized rhcmvIL-10 function with no cross-neutralization of cIL-10. Following subcutaneous RhCMV challenge, the vaccinees exhibited both reduced RhCMV replication locally at the inoculation site and systemically and significantly reduced RhCMV shedding in bodily fluids compared to controls. Attenuation of RhCMV infection by rhcmvIL-10 vaccination argues that neutralization of viral immunomodulation may be a new vaccine paradigm for HCMV by expanding potential vaccine targets.


PLOS ONE | 2012

Host Immune Responses to a Viral Immune Modulating Protein: Immunogenicity of Viral Interleukin-10 in Rhesus Cytomegalovirus-Infected Rhesus Macaques

Meghan K. Eberhardt; W. L. William Chang; Naomi J. Logsdon; Yujuan Yue; Mark R. Walter; Peter A. Barry

Background Considerable evidence has accumulated that multiple viruses, bacteria, and protozoa manipulate interleukin-10 (IL-10)-mediated signaling through the IL-10 receptor (IL-10R) in ways that could enable establishment of a persistent microbial infection. This suggests that inhibition of pathogen targeting of IL-10/IL-10R signaling could prevent microbial persistence. Human cytomegalovirus (HCMV) and rhesus cytomegalovirus (RhCMV) express a viral interleukin-10 (cmvIL-10 and rhcmvIL-10, respectively) with comparable immune modulating properties in vitro to that of their hosts cellular IL-10 (cIL-10). A prior study noted that rhcmvIL-10 alters innate and adaptive immunity to RhCMV in vivo, consistent with a central role for rhcmvIL-10 during acute virus-host interactions. Since cmvIL-10 and rhcmvIL-10 are extremely divergent from the cIL-10 of their respective hosts, vaccine-mediated neutralization of their function could inhibit establishment of viral persistence without inhibition of cIL-10. Methods and Findings As a prelude to evaluating cmvIL-10-based vaccines in humans, the rhesus macaque model of HCMV was used to interrogate peripheral and mucosal immune responses to rhcmvIL-10 in RhCMV-infected animals. ELISA were used to detect rhcmvIL-10-binding antibodies in plasma and saliva, and an IL-12-based bioassay was used to quantify plasma antibodies that neutralized rhcmvIL-10 function. rhcmvIL-10 is highly immunogenic during RhCMV infection, stimulating high avidity rhcmvIL-10-binding antibodies in the plasma of all infected animals. Most infected animals also exhibited plasma antibodies that partially neutralized rhcmvIL-10 function but did not cross-neutralize the function of rhesus cIL-10. Notably, minimally detectable rhcmvIL-10-binding antibodies were detected in saliva. Conclusion This study demonstrates that rhcmvIL-10, as a surrogate for cmvIL-10, is a viable vaccine candidate because (1) it is highly immunogenic during natural RhCMV infection, and (2) neutralizing antibodies to rhcmvIL-10 do not cross-react with rhesus cIL-10. Exceedingly low rhcmvIL-10 antibodies in saliva further suggest that the oral mucosa, which is critical in RhCMV natural history, is associated with suboptimal anti-rhcmvIL-10 antibody responses.


Immunity & Ageing | 2015

The interplay between immune maturation, age, chronic viral infection and environment

Kristie L. Oxford; Myra Grace dela Peña-Ponce; Kara Jensen; Meghan K. Eberhardt; Abigail Spinner; Koen K. A. Van Rompay; Joseph Rigdon; Katie Mollan; V. V. Krishnan; Michael G. Hudgens; Peter A. Barry; Kristina De Paris

BackgroundThe worldwide increase in life expectancy has been associated with an increase in age-related morbidities. The underlying mechanisms resulting in immunosenescence are only incompletely understood. Chronic viral infections, in particular infection with human cytomegalovirus (HCMV), have been suggested as a main driver in immunosenescence. Here, we propose that rhesus macaques could serve as a relevant model to define the impact of chronic viral infections on host immunity in the aging host. We evaluated whether chronic rhesus CMV (RhCMV) infection, similar to HCMV infection in humans, would modulate normal immunological changes in the aging individual by taking advantage of the unique resource of rhesus macaques that were bred and raised to be Specific Pathogen Free (SPF-2) for distinct viruses.ResultsOur results demonstrate that normal age-related immunological changes in frequencies, activation, maturation, and function of peripheral blood cell lymphocytes in humans occur in a similar manner over the lifespan of rhesus macaques. The comparative analysis of age-matched SPF-2 and non-SPF macaques that were housed under identical conditions revealed distinct differences in certain immune parameters suggesting that chronic pathogen exposure modulated host immune responses. All non-SPF macaques were infected with RhCMV, suggesting that chronic RhCMV infection was a major contributor to altered immune function in non-SPF macaques, although a causative relationship was not established and outside the scope of these studies. Further, we showed that immunological differences between SPF-2 and non-SPF macaques were already apparent in adolescent macaques, potentially predisposing RhCMV-infected animals to age-related pathologies.ConclusionsOur data validate rhesus macaques as a relevant animal model to study how chronic viral infections modulate host immunity and impact immunosenescence. Comparative studies in SPF-2 and non-SPF macaques could identify important mechanisms associated with inflammaging and thereby lead to new therapies promoting healthy aging in humans.


Journal of Virology | 2016

Exploitation of Interleukin-10 (IL-10) Signaling Pathways: Alternate Roles of Viral and Cellular IL-10 in Rhesus Cytomegalovirus Infection

Meghan K. Eberhardt; Ashlesha Deshpande; Joseph Fike; Rebecca Short; Kimberli A. Schmidt; Shelley A. Blozis; Mark R. Walter; Peter A. Barry

ABSTRACT There is accumulating evidence that the viral interleukin-10 (vIL-10) ortholog of both human and rhesus cytomegalovirus (HCMV and RhCMV, respectively) suppresses the functionality of cell types that are critical to contain virus dissemination and help shape long-term immunity during the earliest virus-host interactions. In particular, exposure of macrophages, peripheral blood mononuclear cells, monocyte-derived dendritic cells, and plasmacytoid dendritic cells to vIL-10 suppresses multiple effector functions including, notably, those that link innate and adaptive immune responses. Further, vaccination of RhCMV-uninfected rhesus macaques with nonfunctional forms of RhCMV vIL-10 greatly restricted parameters of RhCMV infection following RhCMV challenge of the vaccinees. Vaccinees exhibited significantly reduced shedding of RhCMV in saliva and urine following RhCMV challenge compared to shedding in unvaccinated controls. Based on the evidence that vIL-10 is critical during acute infection, the role of vIL-10 during persistent infection was analyzed in rhesus macaques infected long term with RhCMV to determine whether postinfection vaccination against vIL-10 could change the virus-host balance. RhCMV-seropositive macaques, which shed RhCMV in saliva, were vaccinated with nonfunctional RhCMV vIL-10, and shedding levels of RhCMV in saliva were evaluated. Following robust increases in vIL-10-binding and vIL-10-neutralizing antibodies, shedding levels of RhCMV modestly declined, consistent with the interpretation that vIL-10 may play a functional role during persistent infection. However, a more significant association was observed between the levels of cellular IL-10 secreted in peripheral blood mononuclear cells exposed to RhCMV antigens and shedding of RhCMV in saliva. This result implies that RhCMV persistence is associated with the induction of cellular IL-10 receptor-mediated signaling pathways. IMPORTANCE Human health is adversely impacted by viruses that establish lifelong infections that are often accompanied with increased morbidity and mortality (e.g., infections with HIV, hepatitis C virus, or human cytomegalovirus). A longstanding but unfulfilled goal has been to develop postinfection vaccine strategies that could “reboot” the immune system of an infected individual in ways that would enable the infected host to develop immune responses that clear reservoirs of persistent virus infection, effectively curing the host of infection. This concept was evaluated in rhesus macaques infected long term with rhesus cytomegalovirus by repeatedly immunizing infected animals with nonfunctional versions of the rhesus cytomegalovirus-encoded viral interleukin-10 immune-modulating protein. Following vaccine-mediated boosting of antibody titers to viral interleukin-10, there was modest evidence for increased immunological control of the virus following vaccination. More significantly, data were also obtained that indicated that rhesus cytomegalovirus is able to persist due to upregulation of the cellular interleukin-10 signaling pathway.


Current Topics in Microbiology and Immunology | 2014

Pathogen Manipulation of cIL-10 Signaling Pathways: Opportunities for Vaccine Development?

Meghan K. Eberhardt; Peter A. Barry

Interleukin-10 (IL-10) is a tightly regulated, pleiotropic cytokine that has profound effects on all facets of the immune system, eliciting cell-type-specific responses within cells expressing the IL-10 receptor (IL-10R). It is considered a master immune regulator, and imbalances in IL-10 expression, resulting from either inherent or infectious etiologies, have far reaching clinical ramifications. Regarding infectious diseases, there has been accumulating recognition that many pathogens, particularly those that establish lifelong persistence, share a commonality of their natural histories: manipulation of IL-10-mediated signaling pathways. Multiple viral, bacterial, protozoal, and fungal pathogens appear to have evolved mechanisms to co-opt normal immune functions, including those involving IL-10R-mediated signaling, and immune effector pathways away from immune-mediated protection toward environments of immune evasion, suppression, and tolerance. As a result, pathogens can persist for the life of the infected host, many of whom possess otherwise competent immune systems. Because of pathogenic avoidance of immune clearance, persistent infections can exact incalculable physical and financial costs, and represent some of the most vexing challenges for improvements in human health. Enormous benefits could be gained by the development of efficient prevention and/or therapeutic strategies that block primary infection, or clear the infection. There are now precedents that indicate that modalities focusing on pathogen-mediated manipulation of IL-10 signaling may have clinical benefit.

Collaboration


Dive into the Meghan K. Eberhardt's collaboration.

Top Co-Authors

Avatar

Peter A. Barry

University of California

View shared research outputs
Top Co-Authors

Avatar

Mark R. Walter

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Yujuan Yue

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisa Strelow

University of California

View shared research outputs
Top Co-Authors

Avatar

Naomi J. Logsdon

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashlesha Deshpande

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Christopher E. Allen

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge