Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Meghna Mehta is active.

Publication


Featured researches published by Meghna Mehta.


International Journal of Nanomedicine | 2015

Tumor-targeted and pH-controlled delivery of doxorubicin using gold nanorods for lung cancer therapy

Narsireddy Amreddy; Ranganayaki Muralidharan; Anish Babu; Meghna Mehta; Elyse V Johnson; Yan D. Zhao; Anupama Munshi; Rajagopal Ramesh

Background In lung cancer, the efficacy of conventional chemotherapy is limited due to poor drug accumulation in tumors and nonspecific cytotoxicity. Resolving these issues will increase therapeutic efficacy. Methods GNR-Dox-Tf-NPs (gold nanorod-doxorubicin-transferrin-nanoparticles) were prepared by different chemical approaches. The efficacy of these nanoparticles was carried out by cell viability in lung cancer and primary coronary artery smooth muscle cells. The receptor-mediated endocytosis studies were done with human transferrin and desferrioxamine preincubation. The GNR-Dox-Tf nanoparticles induced apoptosis, and DNA damage studies were done by Western blot, H2AX foci, and comet assay. Results We developed and tested a gold nanorod-based multifunctional nanoparticle system (GNR-Dox-Tf-NP) that carries Dox conjugated to a pH-sensitive linker and is targeted to the transferrin receptor overexpressed in human lung cancer (A549, HCC827) cells. GNR-Dox-Tf-NP underwent physicochemical characterization, specificity assays, tumor uptake studies, and hyperspectral imaging. Biological studies demonstrated that transferrin receptor-mediated uptake of the GNR-Dox-Tf-NP by A549 and HCC827 cells produced increased DNA damage, apoptosis, and cell killing compared with nontargeted GNR-Dox-NP. GNR-Dox-Tf-NP-mediated cytotoxicity was greater (48% A549, 46% HCC827) than GNR-Dox-NP-mediated cytotoxicity (36% A549, 39% HCC827). Further, GNR-Dox-Tf-NP markedly reduced cytotoxicity in normal human coronary artery smooth muscle cells compared with free Dox. Conclusion Thus, GNR-Dox-Tf nanoparticles can selectively target and deliver Dox to lung tumor cells and alleviate free Dox-mediated toxicity to normal cells.


Scientific Reports | 2016

Nanosomes carrying doxorubicin exhibit potent anticancer activity against human lung cancer cells

Akhil Srivastava; Narsireddy Amreddy; Anish Babu; Janani Panneerselvam; Meghna Mehta; Ranganayaki Muralidharan; Allshine Chen; Yan Daniel Zhao; Mohammad Razaq; Natascha Riedinger; Hogyoung Kim; Shaorong Liu; Si Wu; Asim B. Abdel-Mageed; Anupama Munshi; Rajagopal Ramesh

Successful chemotherapeutic intervention for management of lung cancer requires an efficient drug delivery system. Gold nanoparticles (GNPs) can incorporate various therapeutics; however, GNPs have limitations as drug carriers. Nano-sized cellular vesicles like exosomes (Exo) can ferry GNP-therapeutic complexes without causing any particle aggregation or immune response. In the present study, we describe the development and testing of a novel Exo-GNP-based therapeutic delivery system -‘nanosomes’- for lung cancer therapy. This system consists of GNPs conjugated to anticancer drug doxorubicin (Dox) by a pH-cleavable bond that is physically loaded onto the exosomes (Exo-GNP-Dox). The therapeutic efficacy of Dox in nanosomes was assessed in H1299 and A549 non-small cell lung cancer cells, normal MRC9 lung fibroblasts, and Dox-sensitive human coronary artery smooth muscle cells (HCASM). The enhanced rate of drug release under acidic conditions, successful uptake of the nanosomes by the recipient cells and the cell viability assays demonstrated that nanosomes exhibit preferential cytotoxicity towards cancer cells and have minimal activity on non-cancerous cells. Finally, the underlying mechanism of cytotoxicity involved ROS-mediated DNA damage. Results from this study mark the establishment of an amenable drug delivery vehicle and highlight the advantages of a natural drug carrier that demonstrates reduced cellular toxicity and efficient delivery of therapeutics to cancer cells.


Oncotarget | 2016

HuR silencing elicits oxidative stress and DNA damage and sensitizes human triple-negative breast cancer cells to radiotherapy

Meghna Mehta; Kanthesh Basalingappa; James N. Griffith; Daniel Andrade; Anish Babu; Narsireddy Amreddy; Ranganayaki Muralidharan; Myriam Gorospe; Terence S. Herman; Wei Qun Ding; Rajagopal Ramesh; Anupama Munshi

HuR is an mRNA-binding protein whose overexpression in cancer cells has been associated with poor prognosis and resistance to therapy. While reports on HuR overexpression contributing to chemoresistance exist, limited information is available on HuR and radioresistance especially in triple-negative breast cancer (TNBC). In this study we investigated the role of HuR in radiation resistance in three TNBC (MDA-MB-231, MDA-MB-468 and Hs578t) cell lines. Endogenous HuR expression was higher in TNBC cells compared to normal cells. siRNA mediated knockdown of HuR (siHuR) markedly reduced HuR mRNA and protein levels compared to scrambled siRNA (siScr) treatment. Further, siHuR treatment sensitized TNBC cells to ionizing radiation at 2 Gy compared to siScr treatment as evidenced by the significant reduction in clonogenic cell survival from 59%, 49%, and 65% in siScr-treated cells to 40%, 33%, and 46% in siHuR-treated MDA-MB-231, MDA-MB-468 and Hs578t cells, respectively. Molecular studies showed increased ROS production and inhibition of thioredoxin reductase (TrxR) in HuR knockdown cells contributed to radiosensitization. Associated with increased ROS production was evidence of increased DNA damage, demonstrated by a significant increase (p < 0.05) in γ-H2AX foci that persisted for up to 24 h in siHuR plus radiation treated cells compared to control cells. Further, comet assay revealed that HuR-silenced cells had larger and longer-lasting tails than control cells, indicating higher levels of DNA damage. In conclusion, our studies demonstrate that HuR knockdown in TNBC cells elicits oxidative stress and DNA damage resulting in radiosensitization.


Scientific Reports | 2017

HuR-targeted small molecule inhibitor exhibits cytotoxicity towards human lung cancer cells

Ranganayaki Muralidharan; Meghna Mehta; Rebaz Ahmed; Sudeshna Roy; Liang Xu; Jeffrey Aubé; Allshine Chen; Yan Daniel Zhao; Terence S. Herman; Rajagopal Ramesh; Anupama Munshi

Human antigen (Hu) R is an RNA-binding protein whose overexpression in human cancer correlates with aggressive disease, drug resistance, and poor prognosis. HuR inhibition has profound anticancer activity. Pharmacologic inhibitors can overcome the limitations of genetic inhibition. In this study, we examined the antitumor activity of CMLD-2, a small-molecule inhibitor directed against HuR, using non-small cell lung cancer (NSCLC) as a model. CMLD-2 efficacy was tested in vitro using H1299, A549, HCC827, and H1975 NSCLC cells and MRC-9 and CCD-16 normal human fibroblasts. Treatment of NSCLC cells with CMLD-2 produced dose-dependent cytotoxicity, caused a G1 phase cell-cycle arrest and induced apoptosis. CMLD-2 decreased HuR mRNA and the mRNAs of HuR-regulated proteins (Bcl2 and p27) in tumor cells. Additionally, reduction in the expression of HuR, Bcl2, cyclin E, and Bcl-XL with increased expression of Bax and p27 in CMLD-2-treated NSCLC cells were observed. CMLD-2-treated normal cells, HuR-regulated mRNAs and proteins albeit showed some reduction were less compared to tumor cells. Finally, CMLD-2 treatment resulted in greater mitochondrial perturbation, activation of caspase-9 and -3 and cleavage of PARP in tumor cells compared to normal cells. Our proof-of concept study results demonstrate CMLD-2 represents a promising HuR-targeted therapeutic class that with further development could lead to advanced preclinical studied and ultimately for lung cancer treatment.


Oncotarget | 2017

YAP1 inhibition radiosensitizes triple negative breast cancer cells by targeting the DNA damage response and cell survival pathways

Daniel Andrade; Meghna Mehta; James N. Griffith; Janani Panneerselvam; Akhil Srivastava; Tae Dong Kim; Ralf Janknecht; Terence S. Herman; Rajagopal Ramesh; Anupama Munshi

The Hippo pathway is an evolutionarily conserved signaling pathway that regulates proliferation and apoptosis to control organ size during developmental growth. Yes-associated protein 1 (YAP1), the terminal effector of the Hippo pathway, is a transcriptional co-activator and a potent growth promoter that has emerged as a critical oncogene. Overexpression of YAP1 has been implicated in promoting resistance to chemo-, radiation and targeted therapy in various cancers. However, the role of YAP1 in radioresistance in triple-negative breast cancer (TNBC) is currently unknown. We evaluated the role of YAP1 in radioresistance in TNBC in vitro, using two approaches to inhibit YAP1: 1) genetic inhibition by YAP1 specific shRNA or siRNA, and 2) pharmacological inhibition by using the small molecule inhibitor, verteporfin that prevents YAP1 transcriptional activity. Our findings demonstrate that both genetic and pharmacological inhibition of YAP1 sensitizes TNBC cells to radiation by inhibiting the EGFR/PI3K/AKT signaling axis and causing an increased accumulation of DNA damage. Our results reveal that YAP1 activation exerts a protective role for TNBC cells in radiotherapy and represents a pharmacological target to enhance the anti-tumor effects of DNA damaging modalities in the treatment of TNBC.


Oncology Reports | 2017

Silencing BMI1 radiosensitizes human breast cancer cells by inducing DNA damage and autophagy

James Griffith; Daniel Andrade; Meghna Mehta; William L. Berry; Doris M. Benbrook; Natarajan Aravindan; Terence S. Herman; Rajagopal Ramesh; Anupama Munshi

Overexpression of BMI1 in human cancer cells, a member of the polycomb group of repressive complexes, correlates with advanced stage of disease, aggressive clinico-pathological behavior, poor prognosis, and resistance to radiation and chemotherapy. Studies have shown that experimental reduction of BMI1 protein level in tumor cells results in inhibition of cell proliferation, induction of apoptosis and/or senescence, and increased susceptibility to cytotoxic agents and radiation therapy. Although a role for BMI1 in cancer progression and its importance as a molecular target for cancer therapy has been established, information on the impact of silencing BMI1 in triple-negative breast cancer (TNBC) and its consequence on radiotherapy have not been well studied. Therefore, in the present study we investigated the potential therapeutic benefit of radiation therapy in BMI1-silenced breast cancer cells and studied the mechanism(s) of radiosensitization. Human MDA-MB-231 and SUM159PT breast cancer cells that were either stably transfected with a lentiviral vector expressing BMI1 shRNA (shBMI1) or control shRNA (shControl) or transient transfection with a BMI1-specific siRNA were used. Silencing of BMI1 resulted in marked reduction in BMI1 both at the mRNA and protein level that was accompanied by a significant reduction in cell migration compared to control cells. Further, BMI1 knockdown produced a marked enhancement of DNA damage as evidenced by Comet Assay and γH2AX foci, resulting in a dose-dependent radiosensitization effect. Molecular studies revealed modulation of protein expression that is associated with the DNA damage response (DDR) and autophagy pathways. Our results demonstrate that BMI1 is an important therapeutic target in breast cancer and suppression of BMI1 produces radiation sensitivity. Further, combining BMI1-targeted therapeutics with radiation might benefit patients diagnosed with TNBC.


Archive | 2015

Designing of Tumor-Targeted HuR siRNA Nanoparticle as a Therapeutic for Lung Cancer

Ranganayaki Muralidharan; Anish Babu; Kanthesh Basalingappa; Meghna Mehta; Anupama Munshi; Rajagopal Ramesh

Small interfering (si) RNA has emerged as a valuable laboratory tool not only for studying the function of a gene but also as a therapeutic for cancer treatment. siRNA-based therapies are being developed and tested against a plethora of human cancers in laboratories around the world and serve as an alternate strategy for conventional therapy, in particular for cancers that have developed resistance to therapy. Preclinical studies have convincingly demonstrated that siRNA therapy when combined with conventional therapies and small molecule inhibitors produce enhanced antitumor activity. While siRNA therapy is attractive, there are also several hurdles that need to be overcome for successfully translating to the clinic. One major hurdle is the availability of a biodegradable delivery vehicle that can efficiently protect the siRNA from rapid degradation when administered in vivo. siRNA therapy, like conventional and molecularly targeted therapies, requires specificity and targeted delivery to the rapidly growing tumor such that the tumor therapeutic efficacy is high while normal tissue toxicity is low.


Archive | 2018

Recent Advances in Nanoparticle-Based Cancer Drug and Gene Delivery

Narsireddy Amreddy; Anish Babu; Ranganayaki Muralidharan; Janani Panneerselvam; Akhil Srivastava; Rebaz Ahmed; Meghna Mehta; Anupama Munshi; Rajagopal Ramesh

Effective and safe delivery of anticancer agents is among the major challenges in cancer therapy. The majority of anticancer agents are toxic to normal cells, have poor bioavailability, and lack in vivo stability. Recent advancements in nanotechnology provide safe and efficient drug delivery systems for successful delivery of anticancer agents via nanoparticles. The physicochemical and functional properties of the nanoparticle vary for each of these anticancer agents, including chemotherapeutics, nucleic acid-based therapeutics, small molecule inhibitors, and photodynamic agents. The characteristics of the anticancer agents influence the design and development of nanoparticle carriers. This review focuses on strategies of nanoparticle-based drug delivery for various anticancer agents. Recent advancements in the field are also highlighted, with suitable examples from our own research efforts and from the literature.


IEEE Transactions on Nanobioscience | 2016

Nanoparticles for siRNA-Based Gene Silencing in Tumor Therapy

Anish Babu; Ranganayaki Muralidharan; Narsireddy Amreddy; Meghna Mehta; Anupama Munshi; Rajagopal Ramesh

Gene silencing through RNA interference (RNAi) has emerged as a potential strategy in manipulating cancer causing genes by complementary base-pairing mechanism. Small interfering RNA (siRNA) is an important RNAi tool that has found significant application in cancer therapy. However due to lack of stability, poor cellular uptake and high probability of loss-of-function due to degradation, siRNA therapeutic strategies seek safe and efficient delivery vehicles for in vivo applications. The current review discusses various nanoparticle systems currently used for siRNA delivery for cancer therapy, with emphasis on liposome based gene delivery systems. The discussion also includes various methods availed to improve nanoparticle based-siRNA delivery with target specificity and superior efficiency. Further this review describes challenges and perspectives on the development of safe and efficient nanoparticle based-siRNA-delivery systems for cancer therapy.


Cancer Research | 2015

Abstract 3306: The RNA-binding protein HuR radiosensitizes human TNBC cells by modulating the cellular response to DNA damage and oxidative stress

Meghna Mehta; James Griffith; Kanthesh Basalingappa; Anish Babu; Narsireddy Amreddy; Ranganayaki Muralidharan; Myriam Gorospe; Terence S. Herman; Wei-Qun Ding; Rajagopal Ramesh; Anupama Munshi

The RNA-binding protein human antigen R (HuR) associates with U-/AU-rich mRNAs encoding proteins that control cell proliferation, metabolism and the stress response. HuR is overexpressed in several human cancers and its overexpression is associated with poor prognosis and resistance to therapy. While the role of HuR in drug resistance has been studied, its contribution to radiation resistance has not been examined. Therefore, we investigated the role of HuR in radiation resistance of triple negative breast cancer (TNBC) cells: MDA-MB-231, MDA-MB-468 and Hs578t. Reduction of HuR expression using small interfering (si) RNA decreased cell proliferation and sensitized TNBC cells to ionizing radiation. Clonogenic assays indicated that silencing HuR suppressed the clonogenic survival of all three TNBC cell lines with survival at 2 Gy (SF2) reduced from 59%, 49%, 65% in control cells to 40%, 33%, and 46% in siHuR-treated MDA-MB-231, MDA-MB-468 and Hs578t cells, respectively. To delineate the underlying mechanism of radiosensitization and to identify candidate mRNAs showing altered levels after silencing HuR, we undertook a ribonomic approach. First, since ionizing radiation enhances the production of reactive oxygen species (ROS), causing DNA damage, we investigated the possible involvement of ROS in siHuR-mediated radiosensitization. ROS production in control or HuR-silenced cells treated with or without radiation was measured using the fluorescent dye 2′-7′-Dichlorodihydrofluorescein diacetate (DCFDA). Radiation significantly increased ROS generation in HuR knockdown cells compared to control cells. To further test the involvement of ROS in radiosensitivity, control and HuR-silenced cells were pre-treated with N-Acetyl-L- cysteine (NAC), an ROS scavenger, prior to radiation. The presence of NAC completely prevented radiation sensitivity and ROS production, indicating the involvement of ROS in HuR-mediated radiation sensitivity. Second, we directly tested the involvement of the DNA damage response (DDR) pathway in radiosensitivity after silencing HuR by evaluating the number of γ-H2AX foci (a common indicator of DNA damage) in control and HuR-silenced cells following irradiation. Our results showed that the number of γ-H2AX foci was significantly greater in HuR-silenced cells than in control cells at 1 h, 2 h and 24 h after irradiation. The persistence of γ-H2AX foci suggests that radiosensitization by HuR silencing involves inhibition of the repair of damaged DNA. This hypothesis was supported by the comet assay, which showed that HuR-silenced cells had larger and longer-lasting tails than control cells, in keeping with the higher levels of DNA damage seen after silencing HuR. Our studies indicate that radiosensitization upon HuR knockdown is linked to suppression of the cellular response to genotoxic and oxidative damage. Citation Format: Meghna Mehta, James Griffith, Kanthesh Basalingappa, Anish Babu, Narsireddy Amreddy, Ranganayaki Muralidharan, Myriam Gorospe, Terence Herman, Wei-Qun Ding, Rajagopal Ramesh, Anupama Munshi. The RNA-binding protein HuR radiosensitizes human TNBC cells by modulating the cellular response to DNA damage and oxidative stress. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 3306. doi:10.1158/1538-7445.AM2015-3306

Collaboration


Dive into the Meghna Mehta's collaboration.

Top Co-Authors

Avatar

Anupama Munshi

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Rajagopal Ramesh

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Ranganayaki Muralidharan

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Anish Babu

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Narsireddy Amreddy

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Kanthesh Basalingappa

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James Griffith

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Myriam Gorospe

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge