Meghnath Dhimal
Kathmandu
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Meghnath Dhimal.
PLOS ONE | 2014
Meghnath Dhimal; Krishna Kumar Aryal; Mandira Lamichhane Dhimal; Ishan Gautam; Shanker Pratap Singh; Chop Lal Bhusal; Ulrich Kuch
Background Dengue fever (DF) is the most rapidly spreading mosquito-borne viral disease in the world. In this decade it has expanded to new countries and from urban to rural areas. Nepal was regarded DF free until 2004. Since then dengue virus (DENV) has rapidly expanded its range even in mountain regions of Nepal, and major outbreaks occurred in 2006 and 2010. However, no data on the local knowledge, attitude and practice (KAP) of DF in Nepal exist although such information is required for prevention and control measures. Methods We conducted a community based cross-sectional survey in five districts of central Nepal between September 2011 and February 2012. We collected information on the socio-demographic characteristics of the participants and their knowledge, attitude and practice regarding DF using a structured questionnaire. We then statistically compared highland and lowland communities to identify possible causes of observed differences. Principal Findings Out of 589 individuals interviewed, 77% had heard of DF. Only 12% of the sample had good knowledge of DF. Those living in the lowlands were five times more likely to possess good knowledge than highlanders (P<0.001). Despite low knowledge levels, 83% of the people had good attitude and 37% reported good practice. We found a significantly positive correlation among knowledge, attitude and practice (P<0.001). Among the socio-demographic variables, the education level of the participants was an independent predictor of practice level (P<0.05), and education level and interaction between the sex and age group of the participants were independent predictors of attitude level (P<0.05). Conclusion Despite the rapid expansion of DENV in Nepal, the knowledge of people about DF was very low. Therefore, massive awareness programmes are urgently required to protect the health of people from DF and to limit its further spread in this country.
BMC Public Health | 2014
Gajananda Prakash Bhandari; Mirak Raj Angdembe; Meghnath Dhimal; Sushma Neupane; Choplal Bhusal
BackgroundThe prevalence of Non Communicable Diseases (NCDs) is still unknown in Nepal. The Ministry of Health and Population, Government of Nepal has not yet formulated policy regarding NCDs in the absence of evidence based finding. The study aims to find out the hospital based prevalence of NCDs in Nepal, thus directing the concerned authorities at policy level.MethodsA cross sectional study was conducted to identify the hospital based prevalence of 4 NCDs (cancer, cardiovascular disease, diabetes mellitus and chronic obstructive pulmonary disease), wherein 400 indoor patients admitted during 2009 were randomly selected from each of the 31 selected health institutions which included all non-specialist tertiary level hospitals outside the Kathmandu valley (n = 25), all specialist tertiary level hospitals in the country (n = 3) and 3 non-specialist tertiary level hospitals inside the Kathmandu valley. In case of Kathmandu valley, 3 non-specialist health institutions- one central hospital, one medical college and one private hospital were randomly selected. The main analyses are based on the 28 non-specialist hospitals. Univariate (frequency and percentage) and bivariate (cross-tabulation) analysis were used.ResultsIn non-specialist institutions, the hospital based NCD prevalence was 31%. Chronic obstructive pulmonary disease (43%) was the most common NCD followed by cardiovascular disease (40%), diabetes mellitus (12%) and cancer (5%). Ovarian (14%), stomach (14%) and lung cancer (10%) were the main cancers accounting for 38% of distribution. Majority of CVD cases were hypertension (47%) followed by cerebrovascular accident (16%), congestive cardiac failure (11%), ischemic heart disease (7%), rheumatic heart disease (5%) and myocardial infarction (2%). CVD was common in younger age groups while COPD in older age groups. Majority among males (42%) and females (45%) were suffering from COPD.ConclusionsThe study was able to reveal that Nepal is also facing the surging burden of NCDs similar to other developing nations in South East Asia. Furthermore, the study has provided a background data on NCDs in Nepal which should prove useful for the concerned organizations to focus and contribute towards the prevention, control and reduction of NCD burden and its risk factors.
PLOS Neglected Tropical Diseases | 2015
Meghnath Dhimal; Ishan Gautam; Hari Datt Joshi; Robert B. O’Hara; Bodo Ahrens; Ulrich Kuch
Background The presence of the recently introduced primary dengue virus vector mosquito Aedes aegypti in Nepal, in association with the likely indigenous secondary vector Aedes albopictus, raises public health concerns. Chikungunya fever cases have also been reported in Nepal, and the virus causing this disease is also transmitted by these mosquito species. Here we report the results of a study on the risk factors for the presence of chikungunya and dengue virus vectors, their elevational ceiling of distribution, and climatic determinants of their abundance in central Nepal. Methodology/Principal Findings We collected immature stages of mosquitoes during six monthly cross-sectional surveys covering six administrative districts along an altitudinal transect in central Nepal that extended from Birgunj (80 m above sea level [asl]) to Dhunche (highest altitude sampled: 2,100 m asl). The dengue vectors Ae. aegypti and Ae. albopictus were commonly found up to 1,350 m asl in Kathmandu valley and were present but rarely found from 1,750 to 2,100 m asl in Dhunche. The lymphatic filariasis vector Culex quinquefasciatus was commonly found throughout the study transect. Physiographic region, month of collection, collection station and container type were significant predictors of the occurrence and co-occurrence of Ae. aegypti and Ae. albopictus. The climatic variables rainfall, temperature, and relative humidity were significant predictors of chikungunya and dengue virus vectors abundance. Conclusions/Significance We conclude that chikungunya and dengue virus vectors have already established their populations up to the High Mountain region of Nepal and that this may be attributed to the environmental and climate change that has been observed over the decades in Nepal. The rapid expansion of the distribution of these important disease vectors in the High Mountain region, previously considered to be non-endemic for dengue and chikungunya fever, calls for urgent actions to protect the health of local people and tourists travelling in the central Himalayas.
PLOS ONE | 2015
Meghnath Dhimal; Bodo Ahrens; Ulrich Kuch
Background Despite its largely mountainous terrain for which this Himalayan country is a popular tourist destination, Nepal is now endemic for five major vector-borne diseases (VBDs), namely malaria, lymphatic filariasis, Japanese encephalitis, visceral leishmaniasis and dengue fever. There is increasing evidence about the impacts of climate change on VBDs especially in tropical highlands and temperate regions. Our aim is to explore whether the observed spatiotemporal distributions of VBDs in Nepal can be related to climate change. Methodology A systematic literature search was performed and summarized information on climate change and the spatiotemporal distribution of VBDs in Nepal from the published literature until December2014 following providing items for systematic review and meta-analysis (PRISMA) guidelines. Principal Findings We found 12 studies that analysed the trend of climatic data and are relevant for the study of VBDs, 38 studies that dealt with the spatial and temporal distribution of disease vectors and disease transmission. Among 38 studies, only eight studies assessed the association of VBDs with climatic variables. Our review highlights a pronounced warming in the mountains and an expansion of autochthonous cases of VBDs to non-endemic areas including mountain regions (i.e., at least 2,000 m above sea level). Furthermore, significant relationships between climatic variables and VBDs and their vectors are found in short-term studies. Conclusion Taking into account the weak health care systems and difficult geographic terrain of Nepal, increasing trade and movements of people, a lack of vector control interventions, observed relationships between climatic variables and VBDs and their vectors and the establishment of relevant disease vectors already at least 2,000 m above sea level, we conclude that climate change can intensify the risk of VBD epidemics in the mountain regions of Nepal if other non-climatic drivers of VBDs remain constant.
Parasites & Vectors | 2014
Meghnath Dhimal; Bodo Ahrens; Ulrich Kuch
BackgroundIt is increasingly recognized that climate change can alter the geographical distribution of vector-borne diseases (VBDs) with shifts of disease vectors to higher altitudes and latitudes. In particular, an increasing risk of malaria and dengue fever epidemics in tropical highlands and temperate regions has been predicted in different climate change scenarios. The aim of this paper is to expand the current knowledge on the seasonal occurrence and altitudinal distribution of malaria and other disease vectors in eastern Nepal.MethodsAdult mosquitoes resting indoors and outdoors were collected using CDC light trap and aspirators with the support of flash light. Mosquito larvae were collected using locally constructed dippers. We assessed the local residents’ perceptions of the distribution and occurrence of mosquitoes using key informant interview techniques. Generalized linear models were fitted to assess the effect of season, resting site and topography on the abundance of malaria vectors.ResultsThe known malaria vectors in Nepal, Anopheles fluviatilis, Anopheles annularis and Anopheles maculatus complex members were recorded from 70 to 1,820 m above sea level (asl). The vectors of chikungunya and dengue virus, Aedes aegypti and Aedes albopictus, the vector of lymphatic filariasis, Culex quinquefasciatus, and that of Japanese encephalitis, Culex tritaeniorhynchus, were found from 70 to 2,000 m asl in eastern Nepal. Larvae of Anopheles, Culex and Aedes species were recorded up to 2,310 m asl. Only season had a significant effect on the abundance of An. fluviatilis, season and resting site on the abundance of An. maculatus complex members, and season, resting site and topography on the abundance of An. annularis. The perceptions of people on mosquito occurrence are consistent with entomological findings.ConclusionsThis study provides the first vertical distribution records of vector mosquitoes in eastern Nepal and suggests that the vectors of malaria and other diseases have already established populations in the highlands due to climatic and other environmental changes. As VBD control programmes have not been focused on the highlands of Nepal, these findings call for actions to start monitoring, surveillance and research on VBDs in these previously disease-free, densely populated and economically important regions.
PLOS Neglected Tropical Diseases | 2014
Meghnath Dhimal; Ishan Gautam; Aljoscha Kreß; Ruth Müller; Ulrich Kuch
Background Rapidly increasing temperatures in the mountain region of Nepal and recent reports of dengue fever and lymphatic filariasis cases from mountainous areas of central Nepal prompted us to study the spatio-temporal distribution of the vectors of these two diseases along an altitudinal transect in central Nepal. Methodology/Principal Findings We conducted a longitudinal study in four distinct physiographical regions of central Nepal from September 2011 to February 2012. We used BG-Sentinel and CDC light traps to capture adult mosquitoes. We found the geographical distribution of the dengue virus vectors Aedes aegypti and Aedes albopictus along our study transect to extend up to 1,310 m altitude in the Middle Mountain region (Kathmandu). The distribution of the lymphatic filariasis vector Culex quinquefasciatus extended up to at least 2,100 m in the High Mountain region (Dhunche). Statistical analysis showed a significant effect of the physiographical region and month of collection on the abundance of A. aegypti and C. quinquefasciatus only. BG-Sentinel traps captured significantly higher numbers of A. aegypti than CDC light traps. The meteorological factors temperature, rainfall and relative humidity had significant effects on the mean number of A. aegypti per BG-Sentinel trap. Temperature and relative humidity were significant predictors of the number of C. quinquefasciatus per CDC light trap. Dengue fever and lymphatic filariasis cases had previously been reported from all vector positive areas except Dhunche which was free of known lymphatic filariasis cases. Conclusions/Significance We conclude that dengue virus vectors have already established stable populations up to the Middle Mountains of Nepal, supporting previous studies, and report for the first time the distribution of lymphatic filariasis vectors up to the High Mountain region of this country. The findings of our study should contribute to a better planning and scaling-up of mosquito-borne disease control programmes in the mountainous areas of Nepal.
Malaria Journal | 2014
Meghnath Dhimal; Robert B. O’Hara; Ramchandra Karki; Garib D. Thakur; Ulrich Kuch; Bodo Ahrens
BackgroundOver the last decade, the incidence of confirmed malaria has declined significantly in Nepal. The aim of this paper is to assess the spatio-temporal distribution of malaria and its association with climatic factors and vector control interventions in two high-risk districts of Nepal.MethodsHotspot analysis was used to visualize the spatio-temporal variation of malaria incidence over the years at village level and generalized additive mixed models were fitted to assess the association of malaria incidence with climatic variables and vector control interventions.ResultsOpposing trends of malaria incidence were observed in two high-risk malaria districts of eastern and far-western Nepal after the introduction of long-lasting insecticidal nets (LLINs). The confirmed malaria incidence was reduced from 2.24 per 10,000 in 2007 to 0.31 per 10,000 population in 2011 in Morang district but increased from 3.38 to 8.29 per 10,000 population in Kailali district. Malaria hotspots persisted mostly in the same villages of Kailali district, whereas in Morang district malaria hotspots shifted to new villages after the introduction of LLINs. A 1° C increase in minimum and mean temperatures increased malaria incidence by 27% (RR =1.27, 95% CI =1.12-1.45) and 25% (RR =1.25, 95% CI =1.11-1.43), respectively. The reduction in malaria incidence was 25% per one unit increase of LLINs (RR =0.75, 95% CI =0.62-0.92). The incidence of malaria was 82% lower in Morang than in Kailali district (RR =0.18, 95% CI =0.11-0.33).ConclusionsThe study findings suggest that LLIN coverage should be scaled up to entire districts rather than high-incidence foci only. Climatic factors should be considered for malaria micro-stratification, mosquito repellents should be prescribed for those living in forests, forest fringe and foothills and have regular visits to forests, and imported cases should be controlled by establishing fever check posts at border crossings.
Malaria Journal | 2014
Meghnath Dhimal; Bodo Ahrens; Ulrich Kuch
BackgroundMalaria is still a priority public health problem of Nepal where about 84% of the population are at risk. The aim of this paper is to highlight the past and present malaria situation in this country and its challenges for long-term malaria elimination strategies.MethodsMalariometric indicator data of Nepal recorded through routine surveillance of health facilities for the years between 1963 and 2012 were compiled. Trends and differences in malaria indicator data were analysed.ResultsThe trend of confirmed malaria cases in Nepal between 1963 and 2012 shows fluctuation, with a peak in 1985 when the number exceeded 42,321, representing the highest malaria case-load ever recorded in Nepal. This was followed by a steep declining trend of malaria with some major outbreaks. Nepal has made significant progress in controlling malaria transmission over the past decade: total confirmed malaria cases declined by 84% (12,750 in 2002 vs 2,092 in 2012), and there was only one reported death in 2012. Based on the evaluation of the National Malaria Control Programme in 2010, Nepal recently adopted a long-term malaria elimination strategy for the years 2011–2026 with the ambitious vision of a malaria-free Nepal by 2026. However, there has been an increasing trend of Plasmodium falciparum and imported malaria proportions in the last decade. Furthermore, the analysis of malariometric indicators of 31 malaria-risk districts between 2004 and 2012 shows a statistically significant reduction in the incidence of confirmed malaria and of Plasmodium vivax, but not in the incidence of P. falciparum and clinically suspected malaria.ConclusionsBased on the achievements the country has made over the last decade, Nepal is preparing to move towards malaria elimination by 2026. However, considerable challenges lie ahead. These include especially, the need to improve access to diagnostic facilities to confirm clinically suspected cases and their treatment, the development of resistance in parasites and vectors, climate change, and increasing numbers of imported cases from a porous border with India. Therefore, caution is needed before the country embarks towards malaria elimination.
PLOS ONE | 2016
Harapan Harapan; Samsul Anwar; Aslam Bustaman; Arsil Radiansyah; Pradiba Angraini; Riny Fasli; Salwiyadi Salwiyadi; Reza Akbar Bastian; Ade Oktiviyari; Imaduddin Akmal; Muhammad Iqbalamin; Jamalul Adil; Fenni Henrizal; Darmayanti Darmayanti; Rovy Pratama; Jonny Karunia Fajar; Abdul Malik Setiawan; Allison Imrie; Ulrich Kuch; David A. Groneberg; R. Tedjo Sasmono; Meghnath Dhimal; Ruth Müller
Background Dengue virus infection is the most rapidly spreading vector-borne disease in the world. Essential research on dengue virus transmission and its prevention requires community participation. Therefore, it is crucial to understand the factors that are associated with the willingness of communities in high prevalence areas to participate in dengue research. The aim of this study was to explore factors associated with the willingness of healthy community members in Aceh province, Indonesia, to participate in dengue research that would require phlebotomy. Methodology/Principal Findings A community-based cross-sectional study was carried out in nine regencies and municipalities of Aceh from November 2014 to March 2015. Interviews using a set of validated questionnaires were conducted to collect data on demography, history of dengue infection, socioeconomic status, and knowledge, attitude and practice regarding dengue fever. Two-step logistic regression and Spearman’s rank correlation (rs) analysis were used to assess the influence of independent variables on dependent variables. Among 535 participants, less than 20% had a good willingness to participate in the dengue study. The factors associated with good willingness to participate were being female, working as a civil servant, private employee or entrepreneur, having a high socioeconomic status and good knowledge, attitude and practice regarding dengue. Good knowledge and attitude regarding dengue were positive independent predictors of willingness to participate (OR: 2.30 [95% CI: 1.36–3.90] and 3.73 [95% CI: 2.24–6.21], respectively). Conclusion/Significance The willingness to participate in dengue research is very low among community members in Aceh, and the two most important associated factors are knowledge and attitude regarding dengue. To increase participation rate, efforts to improve the knowledge and attitude of community members regarding dengue fever and dengue-related research is required before such studies are launched.
Journal of Health Management | 2013
Gajananda Prakash Bhandari; Meghnath Dhimal; Swadesh Gurung; Choplal Bhusal
Climate change is an escalating issue of concern especially towards health. Malaria, as one of the major public health problems in Jhapa district of Nepal, is one of the sensitive diseases related to climate change. This study has been carried out to assess the relationship between climatic variables and malaria and to find out the range of non-climatic factors that can confound the relationship of climate change and human health. This was a retrospective study in which data of past 10 years relating to climate and disease (malaria) variables were analyzed. The occurrence of malaria in Jhapa was seen almost throughout the year with seasonal fluctuations. With mean annual temperature increase (0.04°C/year), the increase in malaria cases in the district was observed with correlation of 0.284 (p <0.01) and 0.338 (p <0.001) with maximum and minimum temperature, respectively. Rainfall pattern was observed to be decreasing at an average rate of 7.1 mm/year but the malaria cases appeared mostly during the heavy rainfall season/period and had significant correlation between the two variables. On the contrary, Relative Humidity had no significant correlation with malaria occurrence. Climatic variables (except Relative Humidity) were found to be correlated with malaria occurrence but were not the significant predictors when time-series analysis was conducted.