Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Megumi Sasatani is active.

Publication


Featured researches published by Megumi Sasatani.


PLOS ONE | 2014

A Novel ATM/TP53/p21-Mediated Checkpoint Only Activated by Chronic γ-Irradiation

Lili Cao; Hidehiko Kawai; Megumi Sasatani; Daisuke Iizuka; Yuji Masuda; Toshiya Inaba; Keiji Suzuki; Akira Ootsuyama; Toshiyuki Umata; Kenji Kamiya; Fumio Suzuki

Different levels or types of DNA damage activate distinct signaling pathways that elicit various cellular responses, including cell-cycle arrest, DNA repair, senescence, and apoptosis. Whereas a range of DNA-damage responses have been characterized, mechanisms underlying subsequent cell-fate decision remain elusive. Here we exposed cultured cells and mice to different doses and dose rates of γ-irradiation, which revealed cell-type-specific sensitivities to chronic, but not acute, γ-irradiation. Among tested cell types, human fibroblasts were associated with the highest levels of growth inhibition in response to chronic γ-irradiation. In this context, fibroblasts exhibited a reversible G1 cell-cycle arrest or an irreversible senescence-like growth arrest, depending on the irradiation dose rate or the rate of DNA damage. Remarkably, when the same dose of γ-irradiation was delivered chronically or acutely, chronic delivery induced considerably more cellular senescence. A similar effect was observed with primary cells isolated from irradiated mice. We demonstrate a critical role for the ataxia telangiectasia mutated (ATM)/tumor protein p53 (TP53)/p21 pathway in regulating DNA-damage-associated cell fate. Indeed, blocking the ATM/TP53/p21 pathway deregulated DNA damage responses, leading to micronucleus formation in chronically irradiated cells. Together these results provide insights into the mechanisms governing cell-fate determination in response to different rates of DNA damage.


Oncotarget | 2016

Mitochondrial reactive oxygen species perturb AKT/cyclin D1 cell cycle signaling via oxidative inactivation of PP2A in lowdose irradiated human fibroblasts

Tsutomu Shimura; Megumi Sasatani; Kenji Kamiya; Hidehiko Kawai; Yohei Inaba; Naoki Kunugita

Here we investigated the cellular response of normal human fibroblasts to repeated exposure to low-dose radiation. In contrast to acute single radiation, low-dose fractionated radiation (FR) with 0.01 Gy/fraction or 0.05 Gy/fraction for 31 days increased in mitochondrial mass, decreased cellular levels of the antioxidant glutathione and caused persistent accumulation of mitochondrial reactive oxygen species (ROS). Excess ROS promoted oxidative inactivation of protein phosphatase PP2A which in turn led to disruption of normal negative feed-back control of AKT/cyclin D1 signaling in cells treated with long-term FR. The resulting abnormal nuclear accumulation of cyclin D1 causes growth retardation, cellular senescence and genome instability in low-dose irradiated cells. Thus, loss of redox control and subsequently elevated levels of ROS perturb signal transduction as a result of oxidative stress. Our study highlights a specific role of mitochondrial ROS in perturbation of AKT/cyclin D1 cell cycle signaling after low-dose long-term FR. The antioxidants N-acetyl-L-cysteine, TEMPO and mitochondrial-targeted antioxidant Mito-TEMPO provided protection against the harmful cell cycle perturbations induced by low-dose long-term FR.


Cell Cycle | 2014

Nuclear accumulation of cyclin D1 following long-term fractionated exposures to low-dose ionizing radiation in normal human diploid cells

Tsutomu Shimura; Nobuyuki Hamada; Megumi Sasatani; Kenji Kamiya; Naoki Kunugita

Cyclin D1 is a mitogenic sensor that responds to growth signals from the extracellular environment and regulates the G1-to-S cell cycle transition. When cells are acutely irradiated with a single dose of 10 Gy, cyclin D1 is degraded, causing cell cycle arrest at the G1/S checkpoint. In contrast, cyclin D1 accumulates in human tumor cells that are exposed to long-term fractionated radiation (0.5 Gy/fraction of X-rays). In this study we investigated the effect of fractionated low-dose radiation exposure on cyclin D1 localization in 3 strains of normal human fibroblasts. To specifically examine the nuclear accumulation of cyclin D1, cells were treated with a hypotonic buffer containing detergent to remove cytoplasmic cyclin D1. Proliferating cell nuclear antigen (PCNA) immunofluorescence was used to identify cells in S phase. With this approach, we observed S-phase nuclear retention of cyclin D1 following low-dose fractionated exposures, and found that cyclin D1 nuclear retention increased with exposure time. Cells that retained nuclear cyclin D1 were more likely to have micronuclei than non-retaining cells, indicating that the accumulation of nuclear cyclin D1 was associated with genomic instability. Moreover, inhibition of the v-akt murine thymoma viral oncogene homolog (AKT) pathway facilitated cyclin D1 degradation and eliminated cyclin D1 nuclear retention in cells exposed to fractionated radiation. Thus, cyclin D1 may represent a useful marker for monitoring long-term effects associated with exposure to low levels of radiation.


Cell Cycle | 2017

A comparison of radiation-induced mitochondrial damage between neural progenitor stem cells and differentiated cells.

Tsutomu Shimura; Megumi Sasatani; Hidehiko Kawai; Kenji Kamiya; Junya Kobayashi; Kenshi Komatsu; Naoki Kunugita

ABSTRACT Mitochondria play a key role in maintaining cellular homeostasis during stress responses, and mitochondrial dysfunction contributes to carcinogenesis, aging, and neurologic disease. We here investigated ionizing radiation (IR)-induced mitochondrial damage in human neural progenitor stem cells (NSCs), their differentiated counterparts and human normal fibroblasts. Long-term fractionated radiation (FR) with low doses of X-rays for 31 d enhanced mitochondrial activity as evident by elevated mitochondrial membrane potential (ΔΨm) and mitochondrial complex IV (cytochrome c oxidase) activity to fill the energy demands for the chronic DNA damage response in differentiated cells. Subsequent reduction of the antioxidant glutathione via continuous activation of mitochondrial oxidative phosphorylation caused oxidative stress and genomic instability in differentiated cells exposed to long-term FR. In contrast, long-term FR had no effect on the mitochondrial activity in NSCs. This cell type showed efficient DNA repair, no mitochondrial damage, and resistance to long-term FR. After high doses of acute single radiation (SR) (> 5 Gy), cell cycle arrest at the G2 phase was observed in NSCs and human fibroblasts. Under this condition, increase in mitochondria mass, mitochondrial DNA, and intracellular reactive oxygen species (ROS) levels were observed in the absence of enhanced mitochondrial activity. Consequently, cellular senescence was induced by high doses of SR in differentiated cells. In conclusion, we demonstrated that mitochondrial radiation responses differ according to the extent of DNA damage, duration of radiation exposure, and cell differentiation.


Carcinogenesis | 2017

Overexpression of Rev1 promotes the development of carcinogen-induced intestinal adenomas via accumulation of point mutation and suppression of apoptosis proportionally to the Rev1 expression level

Megumi Sasatani; Yang Xi; Junko Kajimura; Toshiyuki Kawamura; Jinlian Piao; Yuji Masuda; Hiroaki Honda; Kei Kubo; Takahiro Mikamoto; Hiromitsu Watanabe; Yanbin Xu; Hidehiko Kawai; Tsutomu Shimura; Asao Noda; Kanya Hamasaki; Yoichiro Kusunoki; Elena Karamfilova Zaharieva; Kenji Kamiya

Summary This study describes the generation of a novel transgenic Rev1-overexpressing transgenic mouse and the role of Rev1 expression level on chemically induced tumorigenesis. Following MNU treatment, Rev1 promoted mutagenesis and suppressed apoptosis in proportion to the level of overexpression, resulting in accelerated tumorigenesis.


Molecular Cancer Therapeutics | 2017

A chemical modulator of p53 transactivation that acts as a radioprotective agonist

Akinori Morita; I. Takahashi; Megumi Sasatani; Shin Aoki; Bing Wang; Shinya Ariyasu; Kaoru Tanaka; Tetsuji Yamaguchi; Akiko Sawa; Yurie Nishi; Tatsuro Teraoka; Shohei Ujita; Yosuke Kawate; Chihiro Yanagawa; Keiji Tanimoto; Atsushi Enomoto; Mitsuru Nenoi; Kenji Kamiya; Yasushi Nagata; Yoshio Hosoi; Toshiya Inaba

Inhibiting p53-dependent apoptosis by inhibitors of p53 is an effective strategy for preventing radiation-induced damage in hematopoietic lineages, while p53 and p21 also play radioprotective roles in the gastrointestinal epithelium. We previously identified some zinc(II) chelators, including 8-quinolinol derivatives, that suppress apoptosis in attempts to discover compounds that target the zinc-binding site in p53. We found that 5-chloro-8-quinolinol (5CHQ) has a unique p53-modulating activity that shifts its transactivation from proapoptotic to protective responses, including enhancing p21 induction and suppressing PUMA induction. This p53-modulating activity also influenced p53 and p53-target gene expression in unirradiated cells without inducing DNA damage. The specificity of 5CHQ for p53 and p21 was demonstrated by silencing the expression of each protein. These effects seem to be attributable to the sequence-specific alteration of p53 DNA-binding, as evaluated by chromatin immunoprecipitation and electrophoretic mobility shift assays. In addition, 5-chloro-8-methoxyquinoline itself had no antiapoptotic activity, indicating that the hydroxyl group at the 8-position is required for its antiapoptotic activity. We applied this remarkable agonistic activity to protecting the hematopoietic and gastrointestinal system in mouse irradiation models. The dose reduction factors of 5CHQ in total-body and abdominally irradiated mice were about 1.2 and 1.3, respectively. 5CHQ effectively protected mouse epithelial stem cells from a lethal dose of abdominal irradiation. Furthermore, the specificity of 5CHQ for p53 in reducing the lethality induced by abdominal irradiation was revealed in Trp53-KO mice. These results indicate that the pharmacologic upregulation of radioprotective p53 target genes is an effective strategy for addressing the gastrointestinal syndrome. Mol Cancer Ther; 17(2); 432–42. ©2017 AACR. See all articles in this MCT Focus section, “Developmental Therapeutics in Radiation Oncology.”


Cell Cycle | 2017

ATM-mediated mitochondrial damage response triggered by nuclear DNA damage in normal human lung fibroblasts

Tsutomu Shimura; Megumi Sasatani; Hidehiko Kawai; Kenji Kamiya; Junya Kobayashi; Kenshi Komatsu; Naoki Kunugita

ABSTRACT Ionizing radiation (IR) elevates mitochondrial oxidative phosphorylation (OXPHOS) in response to the energy requirement for DNA damage responses. Reactive oxygen species (ROS) released during mitochondrial OXPHOS may cause oxidative damage to mitochondria in irradiated cells. In this paper, we investigated the association between nuclear DNA damage and mitochondrial damage following IR in normal human lung fibroblasts. In contrast to low-doses of acute single radiation, continuous exposure of chronic radiation or long-term exposure of fractionated radiation (FR) induced persistent Rad51 and γ-H2AX foci at least 24 hours after IR in irradiated cells. Additionally, long-term FR increased mitochondrial ROS accompanied with enhanced mitochondrial membrane potential (ΔΨm) and mitochondrial complex IV (cytochrome c oxidase) activity. Mitochondrial ROS released from the respiratory chain complex I caused oxidative damage to mitochondria. Inhibition of ATM kinase or ATM loss eliminated nuclear DNA damage recognition and mitochondrial radiation responses. Consequently, nuclear DNA damage activates ATM which in turn increases ROS level and subsequently induces mitochondrial damage in irradiated cells. In conclusion, we demonstrated that ATM is essential in the mitochondrial radiation responses in irradiated cells. We further demonstrated that ATM is involved in signal transduction from nucleus to the mitochondria in response to IR.


PLOS ONE | 2015

RAD18 Activates the G2/M Checkpoint through DNA Damage Signaling to Maintain Genome Integrity after Ionizing Radiation Exposure

Megumi Sasatani; Yanbin Xu; Hidehiko Kawai; Lili Cao; Satoshi Tateishi; Tsutomu Shimura; Jianxiang Li; Daisuke Iizuka; Asao Noda; Kanya Hamasaki; Yoichiro Kusunoki; Kenji Kamiya

The ubiquitin ligase RAD18 is involved in post replication repair pathways via its recruitment to stalled replication forks, and its role in the ubiquitylation of proliferating cell nuclear antigen (PCNA). Recently, it has been reported that RAD18 is also recruited to DNA double strand break (DSB) sites, where it plays novel functions in the DNA damage response induced by ionizing radiation (IR). This new role is independent of PCNA ubiquitylation, but little is known about how RAD18 functions after IR exposure. Here, we describe a role for RAD18 in the IR-induced DNA damage signaling pathway at G2/M phase in the cell cycle. Depleting cells of RAD18 reduced the recruitment of the DNA damage signaling factors ATM, γH2AX, and 53BP1 to foci in cells at the G2/M phase after IR exposure, and attenuated activation of the G2/M checkpoint. Furthermore, depletion of RAD18 increased micronuclei formation and cell death following IR exposure, both in vitro and in vivo. Our data suggest that RAD18 can function as a mediator for DNA damage response signals to activate the G2/M checkpoint in order to maintain genome integrity and cell survival after IR exposure.


Molecular Cancer Research | 2018

Radiation-Induced Myofibroblasts Promote Tumor Growth via Mitochondrial ROS–Activated TGFβ Signaling

Tsutomu Shimura; Megumi Sasatani; Hidehiko Kawai; Kenji Kamiya; Junya Kobayashi; Kenshi Komatsu; Naoki Kunugita

Fibroblasts are a key stromal cell in the tumor microenvironment (TME) and promote tumor growth via release of various growth factors. Stromal fibroblasts in cancer, called cancer-associated fibroblasts (CAF), are related to myofibroblasts, an activated form of fibroblast. While investigating the role of stroma fibroblasts on radiation-related carcinogenesis, it was observed following long-term fractionated radiation (FR) that the morphology of human diploid fibroblasts changed from smaller spindle shapes to larger flat shapes. These cells expressed smooth muscle actin (α-SMA) and platelet-derived growth factor receptors, markers of myofibroblasts and CAFs, respectively. Long-term FR induces progressive damage to the fibroblast nucleus and mitochondria via increases in mitochondrial reactive oxygen species (ROS) levels. Here, it is demonstrated that long-term FR-induced α-SMA–positive cells have decreased mitochondrial membrane potential and activated oxidative stress responses. Antioxidant N-acetyl cysteine suppressed radiation-induced mitochondrial damage and generation of myofibroblasts. These results indicate that mitochondrial ROS are associated with the acquisition of myofibroblasts after long-term FR. Mechanistically, mitochondrial ROS activated TGFβ signaling which in turn mediated the expression of α-SMA in radiation-induced myofibroblasts. Finally, in vivo tumor growth analysis in a human tumor xenograft model system revealed that long-term FR-induced myofibroblasts promote tumor growth by enhancing angiogenesis. Implications: Radiation affects malignant cancer cells directly and indirectly via molecular alterations in stromal fibroblasts such as activation of TGFβ and angiogenic signaling pathways. Mol Cancer Res; 16(11); 1676–86. ©2018 AACR.


American Journal of Hypertension | 2018

Protective Effects of Japanese Soybean Paste (Miso) on Stroke in Stroke-Prone Spontaneously Hypertensive Rats (SHRSP)

Hiromitsu Watanabe; Megumi Sasatani; Toshiki Doi; Takao Masaki; Kenichi Satoh; Masao Yoshizumi

BACKGROUND AND HYPOSESIS Soybean isoflavones have been shown to reduce the risk of cerebral infarction in humans according to epidemiological studies. However, whether intake of miso can reduce the incidence of stroke in animal models remains unknown. In this study, we investigated the effects of soybean paste (miso) in an animal model of stroke. METHODS Stroke-prone spontaneously hypertensive rats (SHRSP) were fed a miso diet (normal diet 90%, miso 10%; final NaCl content 2.8%), a high salt diet (normal diet and NaCl 2.5%; final NaCl content 2.8%), or a low salt diet (normal diet; final NaCl content 0.3%). RESULTS Kaplan-Meier survival curves revealed a significantly lower survival rate in the high salt group compared to the miso group (P = 0.002) and the low salt group (P ≤ 0.001). Large hemorrhagic macules were found in the cerebrum in the high salt group, whereas none were found in the other 2 groups. There were also fewer histological and immunohistochemical changes in the brain and kidneys in the miso group compared to the high salt group. CONCLUSION Our results suggest that miso may have protective effects against stroke despite its high salt content.

Collaboration


Dive into the Megumi Sasatani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bing Wang

National Institute of Radiological Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge