Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mehdi Ramezani-Moghadam is active.

Publication


Featured researches published by Mehdi Ramezani-Moghadam.


Gastroenterology | 2009

Kupffer Cells Mediate Leptin-Induced Liver Fibrosis

Jianhua Wang; Isabelle Leclercq; Joanne Brymora; Ning Xu; Mehdi Ramezani-Moghadam; Roslyn M. London; David R. Brigstock; Jacob George

BACKGROUND & AIMS Leptin has profibrogenic effects in liver, although the mechanisms of this process are unclear. We sought to elucidate the direct and indirect effects of leptin on hepatic stellate cells (HSCs). METHODS HSCs from Sprague-Dawley rats were exposed to leptin and expression of collagen-I, tissue inhibitor of matrix metalloproteinases-1 (TIMP1), transforming growth factor beta1 (TGF-beta1), and connective tissue growth factor (CTGF/CCN2) was assessed. The effects of medium from Kupffer cells (KCs) and sinusoidal endothelial cells (SECs) following leptin were evaluated in HSCs; alpha-smooth muscle actin (alphaSMA) production and KC signaling were analyzed. RESULTS HSCs were not activated by incubation with leptin. However, HSCs cultured with medium taken from KCs that were incubated with leptin had increased expression of collagen I, TIMP1, TGF-beta1, and CTGF/CCN2, as well as alphaSMA protein levels and proliferation. These effects were leptin receptor dependent because conditioned medium from KCs isolated from leptin receptor-deficient Zucker (fa/fa) rats did not activate HSCs. In KCs incubated with leptin, messenger RNA and protein expression of TGF-beta1 and CTGF/CCN2 increased. Leptin potentiated signal transducer and activator of transcription 3, AKT, and extracellular signal-related kinase 1/2 phosphorylation in KCs and increased AP-1 and nuclear factor-kappaB DNA binding. Finally, addition of anti-TGF-beta to KC-conditioned medium inhibited HSC expression of collagen I, TIMP1, and CTGF/CCN2, whereas signal transducer and activator of transcription 3 inhibitor attenuated TGF-beta1 production by KC. CONCLUSIONS Leptin mediates HSC activation and liver fibrosis through indirect effects on KC; these effects are partly mediated by TGF-beta1.


Hepatology | 2013

Hepatic fat loss in advanced nonalcoholic steatohepatitis: Are alterations in serum adiponectin the cause?

David van der Poorten; Caroline Flora Samer; Mehdi Ramezani-Moghadam; Sally Coulter; Marina Kacevska; Dennis Schrijnders; Lindsay E. Wu; Duncan McLeod; Elisabetta Bugianesi; Mina Komuta; Tania Roskams; Christopher Liddle; Lionel Hebbard; Jacob George

Advanced liver fibrosis in nonalcoholic steatohepatitis (NASH) is often accompanied by a reduction in hepatic fat to the point of complete fat loss (burnt‐out NASH), but the mechanisms behind this phenomenon have not been elucidated. Adiponectin is raised in cirrhosis of any cause and has potent antisteatotic activity. In this study we examined 65 patients with advanced biopsy‐proven NASH (fibrosis stage 3‐4) and 54 with mild disease (fibrosis stage 0‐1) to determine if disappearance of steatosis correlated with changes in serum adiponectin. All patents had fasting blood tests and anthropometric measures at the time of liver biopsy. Liver fat was accurately quantitated by morphometry. Serum adiponectin was measured by immunoassay. When compared to those with early disease, patients with advanced NASH were more insulin‐resistant, viscerally obese, and older, but there was no difference in liver fat content or adiponectin levels. Adiponectin had a significant negative correlation with liver fat percentage in the whole cohort (r = −0.28, P < 0.01), driven by patients with advanced NASH (r = −0.40, P < 0.01). In advanced NASH, for each 4 μg/L increase in adiponectin there was an odds ratio OR of 2.0 (95% confidence interval [CI]: 1.3‐3.0, P < 0.01) for a 5% reduction in hepatic fat. Adiponectin was highly and significantly associated with almost complete hepatic fat loss or burnt‐out NASH (12.1 versus 7.4 μg/L, P = 0.001) on multivariate analysis. A relationship between adiponectin, bile acids, and adipocyte fexaramine activation was demonstrated in vivo and in vitro, suggestive of hepatocyte‐adipocyte crosstalk. Conclusion: Serum adiponectin levels in advanced NASH are independently associated with hepatic fat loss. Adiponectin may in part be responsible for the paradox of burnt‐out NASH. (HEPATOLOGY 2012)


Journal of Biological Chemistry | 2015

Adiponectin Reduces Hepatic Stellate Cell Migration by Promoting Tissue Inhibitor of Metalloproteinase-1 (TIMP-1) Secretion

Mehdi Ramezani-Moghadam; Jianhua Wang; Vikki Ho; Tristan J. Iseli; Badr Alzahrani; Aimin Xu; David van der Poorten; Liang Qiao; Jacob George; Lionel Hebbard

Background: Adiponectin has been shown to limit liver fibrosis, but the molecular mechanisms remain unknown. Results: In vitro and in vivo adiponectin increases TIMP-1 secretion, which binds to the CD63/β1-integrin complex to decrease FAK activity and stellate cell migration. Conclusion: Adiponectin-promoted TIMP-1 plays an important role in limiting liver fibrosis. Significance: Targeting adiponectin signaling could be a useful way to limit liver fibrosis. Hepatic stellate cells (HSC) are central players in liver fibrosis that when activated, proliferate, migrate to sites of liver injury, and secrete extracellular matrix. Obesity, a known risk factor for liver fibrosis is associated with reduced levels of adiponectin, a protein that inhibits liver fibrosis in vivo and limits HSC proliferation and migration in vitro. Adiponectin-mediated activation of adenosine monophosphate-activated kinase (AMPK) inhibits HSC proliferation, but the mechanism by which it limits HSC migration to sites of injury is unknown. Here we sought to elucidate how adiponectin regulates HSC motility. Primary rat HSCs were isolated and treated with adiponectin in migration assays. The in vivo actions of adiponectin were examined by treating mice with carbon tetrachloride for 12 weeks and then injecting them with adiponectin. Cell and tissue samples were collected and analyzed for gene expression, signaling, and histology. Serum from patients with liver fibrosis was examined for adiponectin and tissue inhibitor of metalloproteinase-1 (TIMP-1) protein. Adiponectin administration into mice increased TIMP-1 gene and protein expression. In cultured HSCs, adiponectin promoted TIMP-1 expression and through binding of TIMP-1 to the CD63/β1-integrin complex reduced phosphorylation of focal adhesion kinase to limit HSC migration. In mice with liver fibrosis, adiponectin had similar effects and limited focal adhesion kinase phosphorylation. Finally, in patients with advanced fibrosis, there was a positive correlation between serum adiponectin and TIMP-1 levels. In sum, these data show that adiponectin stimulates TIMP-1 secretion by HSCs to retard their migration and contributes to the anti-fibrotic effects of adiponectin.


Journal of Molecular Medicine | 2015

Adiponectin attenuates liver fibrosis by inducing nitric oxide production of hepatic stellate cells

Zhixia Dong; Lin Su; Saeed Esmaili; Tristan J. Iseli; Mehdi Ramezani-Moghadam; Liangshuo Hu; Aimin Xu; Jacob George; Jianhua Wang

Adiponectin protects against liver fibrosis, but the mechanisms have not been fully elucidated. Here, we showed that adiponectin upregulated inducible nitric oxide synthase (iNOS) messenger RNA (mRNA) and protein expression in hepatic non-parenchymal cells, particularly in hepatic stellate cells (HSCs), and increased nitric oxide (NO2−/NO3−) concentration in HSC-conditioned medium. Adiponectin attenuated HSC proliferation and migration but promoted apoptosis in a NO-dependent manner. More advanced liver fibrosis with decreased iNOS/NO levels was observed in adiponectin knockout mice comparing to wide-type mice when administered with CCI4 while NO donor supplementation rescued the phenotype. Further experiments demonstrated that adiponectin-induced iNOS/NO system activation is mediated through adipoR2-AMPK-JNK/Erk1/2-NF-κB signaling. These data suggest that adiponectin inhibits HSC function, further limiting the development of liver fibrosis at least in part through adiponectin-induced NO release. Therefore, adiponectin-mediated NO signaling may be a novel target for the treatment of liver fibrosis.Key messages• Adiponectin activates HSC iNOS/NO and SEC eNOS/NO systems.• Adiponectin inhibits HSC proliferation and migration but promotes its apoptosis.• Adiponectin inhibits CCL4-induced liver fibrosis by modulation of liver iNOS/NO.• Adiponectin stimulates HSC iNOS/NO via adipoR2-AMPK-JNK/ErK1/2-NF-κB pathway.


Alcoholism: Clinical and Experimental Research | 2011

Leptin and acetaldehyde synergistically promotes αSMA expression in hepatic stellate cells by an interleukin 6-dependent mechanism.

Yingdi Liu; Joanne Brymora; Hongyi Zhang; Briohny Smith; Mehdi Ramezani-Moghadam; Jacob George; Jianhua Wang

BACKGROUND The mechanisms whereby patients with obesity/overweight are more susceptible to alcohol-associated liver fibrosis are unclear. Leptin, a peptide hormone secreted by white adipose tissue is increased in association with overweight/obesity and is recognized as mediator of liver fibrosis. We sought to assess whether leptin contributes to alcoholic liver fibrosis by in vitro studies in hepatic stellate cells (HSC). METHODS Rat HSCs in second or third passage were utilised. Leptin, Acetaldehyde or combination with leptin and acetaldehyde were incubated for specific periods in cultured HSCs. Profibrogenic gene and protein expression were determined and associated-signalling pathways were assessed. Interleukin 6 (IL-6) antibody neutralization was used to evaluate the role of IL-6. RESULTS Leptin did not promote acetaldehyde-induced gene expression of collagen I, transforming growth factor β1 (TGFβ1) and tissue inhibitor of metalloproteinase 1 (TIMP1) in vitro. However, combined treatment of leptin with acetaldehyde synergistically enhanced the protein expression of smooth muscle actin (αSMA), an activation marker of HSCs, and of Interleukin-6 (IL-6). The combination of leptin and acetaldehyde also augmented MAPK/p38 and MAPK/ERK1/2 phosphoprotein expression. IL-6 neutralization down-regulated protein expression of pp38, pERK1/2 and αSMA, while exogenous rat recombinant IL-6 administration up-regulated αSMA. Similarly, MAPK/p38 and MAPK/ERK1/2 inhibition attenuated αSMA expression. H(2)O(2) induction by acetaldehyde was not potentiated by co-treatment with leptin nor did IL-6 neutralization reduce acetaldehyde-induced H(2)O(2) production. CONCLUSIONS We conclude that leptin potentiates acetaldehyde-induced HSC activation and αSMA expression by an IL-6-dependent mechanism.


Journal of General Virology | 2014

Endocannabinoid CB1 antagonists inhibit hepatitis C virus production, providing a novel class of antiviral host-targeting agents.

Mahsa Shahidi; Enoch Tay; Scott A. Read; Mehdi Ramezani-Moghadam; Kazuaki Chayama; Jacob George; Mark W. Douglas

Direct-acting antivirals have significantly improved treatment outcomes in chronic hepatitis C (CHC), but side effects, drug resistance and cost mean that better treatments are still needed. Lipid metabolism is closely linked with hepatitis C virus (HCV) replication, and endocannabinoids are major regulators of lipid homeostasis. The cannabinoid 1 (CB1) receptor mediates these effects in the liver. We have previously shown upregulation of CB1 receptors in the livers of patients with CHC, and in a HCV cell-culture model. Here, we investigated whether CB1 blockade inhibited HCV replication. The antiviral effect of a CB1 antagonist, N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251), was examined in HCV strain JFH1 cell-culture and subgenomic replicon models. The effects on the expression of genes involved in lipid metabolism were also measured. CB1 short hairpin RNA (shRNA) was used to confirm that the effects were specific for the cannabinoid receptor. Treatment with AM251 strongly inhibited HCV RNA (~70 %), viral protein (~80 %), the production of new virus particles (~70 %) and virus infectivity (~90 %). As expected, AM251 reduced the expression of pro-lipogenic genes (SREBP-1c, FASN, SCD1 and ACC1) and stimulated genes promoting lipid oxidation (CPT1 and PPARα). This effect was mediated by AMP-activated protein kinase (AMPK). Stable CB1 knockdown of cells infected with HCV showed reduced levels of HCV RNA compared with controls. Thus, reduced CB1 signalling inhibits HCV replication using either pharmacological inhibitors or CB1 shRNA. This may be due, at least in part, to reduced lipogenesis, mediated by AMPK activation. We suggest that CB1 antagonists may represent an entirely new class of drug with activity against HCV.


Journal of Biological Chemistry | 2017

Adiponectin confers protection from acute colitis and restricts a B cell immune response

Stephanie Obeid; Miriam Wankell; Bérénice Charrez; Jade Sternberg; Roxane Kreuter; Saeed Esmaili; Mehdi Ramezani-Moghadam; Carol Devine; Scott A. Read; Prithi S. Bhathal; Andreas L. Lopata; Golo Ahlenstiel; Liang Qiao; Jacob George; Lionel Hebbard

Adiponectin demonstrates beneficial effects in various metabolic diseases, including diabetes, and in bowel cancer. Recent data also suggest a protective role in colitis. However, the precise molecular mechanisms by which adiponectin and its receptors modulate colitis and the nature of the adaptive immune response in murine models are yet to be elucidated. Adiponectin knock-out mice were orally administered dextran sulfate sodium for 7 days and were compared with wild-type mice. The severity of disease was analyzed histopathologically and through cytokine profiling. HCT116 colonic epithelial cells were employed to analyze the in vitro effects of adiponectin and AdipoR1 interactions in colonic injury following dextran sulfate sodium treatment. Adiponectin knock-out mice receiving dextran sulfate sodium exhibited severe colitis, had greater inflammatory cell infiltration, and an increased presence of activated B cells compared with controls. This was accompanied by an exaggerated proinflammatory cytokine profile and increased STAT3 signaling. Adiponectin knock-out mouse colons had markedly reduced proliferation and increased epithelial apoptosis and cellular stress. In vitro, adiponectin reduced apoptotic, anti-proliferative, and stress signals and restored STAT3 signaling. Following the abrogation of AdipoR1 in vitro, these protective effects of adiponectin were abolished. In summary, adiponectin maintains intestinal homeostasis and protects against murine colitis through interactions with its receptor AdipoR1 and by modulating adaptive immunity.


Biochimica et Biophysica Acta | 2018

The role of AdipoR1 and AdipoR2 in liver fibrosis

Badr Alzahrani; Tristan J. Iseli; Mehdi Ramezani-Moghadam; Vikki Ho; Miriam Wankell; Eun Jin Sun; Liang Qiao; Jacob George; Lionel Hebbard

Activation of the adiponectin (APN) signaling axis retards liver fibrosis. However, understanding of the role of AdipoR1 and AdipoR2 in mediating this response is still rudimentary. Here, we sought to elucidate the APN receptor responsible for limiting liver fibrosis by employing AdipoR1 and AdipoR2 knock-out mice in the carbon tetrachloride (CCl4) model of liver fibrosis. In addition, we knocked down receptor function in primary hepatic stellate cells (HSCs) in vitro. Following the development of fibrosis, AdipoR1 and AdipoR2 KO mice had no quantitative difference in fibrosis by Sirius red staining. However, AdipoR2 KO mice had an enhanced fibrotic signature with increased Col1-α1, TGFß-1, TIMP-1, IL-10, MMP-2 and MMP-9. Knockdown of AdipoR1 or AdipoR2 in HSCs followed by APN treatment demonstrated that AdipoR1 and AdipoR2 did not affect proliferation or TIMP-1 gene expression, while AdipoR2 modulated Col1-α1 and α-SMA gene expression, HSC migration, and AMPK activity. These finding suggest that AdipoR2 is the major APN receptor on HSCs responsible for mediating its anti-fibrotic effects.


European Journal of Immunology | 2016

Interferon lambda drives a pro-inflammatory phenotype in macrophages

Scott A. Read; Mehdi Ramezani-Moghadam; Stephen D. Schibeci; Jacob George; Golo Ahlenstiel

CD4+Foxp3+ regulatory T cells (Tregs) are the main regulators of peripheral tolerance and prevent the development of fatal autoimmune disease in humans and mice. Furthermore, Tregs have also been implicated in suppressing anti-tumour immune responses and are often enriched at sites of primary and metastatic tumours. While studies have shown the effect of Treg ablation on the control of primary tumours, few studies have examined their contribution to metastasis progression. In this thesis I hypothesised that the depletion of Tregs could promote control over metastasis. To address this, a highly metastatic murine mammary carcinoma cell line 4T1 was injected into transgenic mice expressing the diphtheria toxin receptor in Foxp3+ cells. Foxp3+ cells were depleted by administration of diphtheria toxin and the impact of this on growth of primary tumours and metastases was assessed and measured in vitro clonogenic assays. Results of these experiments indicated that Tregdepletion led to control of primary tumour growth and in some mice to control of metastases. Control of metastases was linked to control of primary tumour growth. In order to measure metastasis in vivo, a PET/CT imaging technique was optimized. Primary tumours and large metastatic nodules were successfully imaged in mice using F18 FDG as a radiotracer. However, the studies described herein revealed that micrometastases in mouse lungs were too small to be reliably identified using PET data parameters. CT imaging did however enable detection of increases in tissue density within the lungs, which was suggestive of micrometastases. Data obtained in this way also indicated that Treg-depletion promotes control of metastasis in some mice. Collectively, the findings described in this thesis indicate that Tregdepletion can contribute to control of metastatic disease and should therefore represent an important component of novel immunotherapies.Changes in microbiome, mucosal immunity and intestinal integrity have been associated with the onset of Type 1 Diabetes (T1D) in children. Toll-like Receptors (TLR) have been associated all three factors. The role of TLR and their effects on microbiome in autoimmunity were studied by crossing TLR1,2,4,6,9 and MyD88 targeted deficiency mutations to the type 1 diabetes (T1D)-prone NOD mouse strain. While NOD.Tlr9-/- and NOD.Tlr6-/- mice were unaffected, T1D in NOD.Tlr4-/- and NOD.Tlr1-/- mice was exacerbated and that in NOD.Myd88-/- and NOD.Tlr2-/- mice ameliorated. Physical parameters of the intestines were compared; ileal weight was reduced in NOD.Tlr1-/-mice. Similarly, by histology, these mice had reduced villus length and width. The intestinal microbiomes of NOD wild-type (WT), NOD.Tlr1-/-, NOD.Tlr2-/- and NOD.Tlr4-/- mice were compared by high throughput sequencing of 16S ribosomal DNA (rDNA), in two cohorts, 18 months apart. Analysis of caecal 16S sequences clearly resolved the mouse lines and there were significant differences in beta diversity between the strains, with individual bacterial species contributing greatly to the differences in the microbiota of individual TLR-deficient strains. To test the relationship between microbiome and T1D, all strains were re-derived onto the parental NOD/Lt line and the incidence of T1D re-assessed within two generations. All rederived lines expressed an incidence of disease similar to that of the parental line. TLR deficiencies are associated with changes in microbiome; changes of microbiome are associated with T1D; the effects of TLR deficiencies on T1D appear to be mediated by their effects on gut flora.Intestinal TCRb+CD4-CD8b-CD8a+ (CD8aa) IELs alleviate T cell induced colitis and have been suggested to play a role in virus infection and cancer. Their thymic development has been elucidated to some extent, as IEL precursors (IELp) are known to be CD4-CD8-CD5+TCRb+, but is not yet fully understood. Within the thymus, mature IELp were identified based on their expression of CD122 and MHC class I. Two major phenotypic subsets exist within this mature thymic IELp population: a PD1+Tbet- population that preferentially expresses a4b7, and a PD1-Tbet+ population with preferential CD103 expression. These two populations were also distinct in their Valpha repertoire. The PD1+a4b7+ population contains clones that are strongly self-reactive as judged by Nur77GFP and their dramatic increase in Bim deficient mice, while the PD1-Tbet+ population did not show these characteristics. Both gave rise to CD8aa IELs upon adoptive transfer into RAG-/- recipients. However intrathymic labeling revealed that PD1+a4b7+ IELp were the major thymic emigrating population, and emigration was S1P1-dependent. In contrast, PD1-Tbet+ IELp expressed CXCR3, were retained, and accumulated in the thymus with age. Preliminary immunofluorescence data furthermore indicate differential thymic cortico-medullary localization of the IELp subtypes. These experiments more precisely define the behavior of IEL precursors.


Pharmacological Research | 2015

Effect of resveratrol on experimental non-alcoholic steatohepatitis

Sara Heebøll; Karen Louise Thomsen; Andrew D. Clouston; Elias I. Sundelin; Yulia Radko; Lars Porskjær Christensen; Mehdi Ramezani-Moghadam; Martin Kreutzfeldt; Steen B. Pedersen; Niels Jessen; Lionel Hebbard; Jacob George; Henning Grønbæk

Collaboration


Dive into the Mehdi Ramezani-Moghadam's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tristan J. Iseli

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge