Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mehmet Alpaslan is active.

Publication


Featured researches published by Mehmet Alpaslan.


Monthly Notices of the Royal Astronomical Society | 2015

Galaxy And Mass Assembly (GAMA): end of survey report and data release 2

J. Liske; Ivan K. Baldry; Simon P. Driver; Richard J. Tuffs; Mehmet Alpaslan; E. Andrae; Sarah Brough; Michelle E. Cluver; M. W. Grootes; M. L. P. Gunawardhana; Lee S. Kelvin; J. Loveday; Aaron S. G. Robotham; Edward N. Taylor; Steven P. Bamford; Joss Bland-Hawthorn; Michael J. I. Brown; Michael J. Drinkwater; Andrew M. Hopkins; Martin Meyer; Peder Norberg; J. A. Peacock; Nicola K. Agius; Stephen K. Andrews; Amanda E. Bauer; J. H. Y. Ching; Matthew Colless; Christopher J. Conselice; Scott M. Croom; Luke J. M. Davies

The Galaxy And Mass Assembly (GAMA) survey is one of the largest contemporary spectroscopic surveys of low redshift galaxies. Covering an area of ∼286 deg2 (split among five survey regions) down to a limiting magnitude of r < 19.8 mag, we have collected spectra and reliable redshifts for 238 000 objects using the AAOmega spectrograph on the Anglo-Australian Telescope. In addition, we have assembled imaging data from a number of independent surveys in order to generate photometry spanning the wavelength range 1 nm–1 m. Here, we report on the recently completed spectroscopic survey and present a series of diagnostics to assess its final state and the quality of the redshift data. We also describe a number of survey aspects and procedures, or updates thereof, including changes to the input catalogue, redshifting and re-redshifting, and the derivation of ultraviolet, optical and near-infrared photometry. Finally, we present the second public release of GAMA data. In this release, we provide input catalogue and targeting information, spectra, redshifts, ultraviolet, optical and near-infrared photometry, single-component Sersic fits, stellar masses, Hα-derived star formation rates, environment information, and group properties for all galaxies with r < 19.0 mag in two of our survey regions, and for all galaxies with r < 19.4 mag in a third region (72 225 objects in total). The data base serving these data is available at http://www.gama-survey.org/.


Monthly Notices of the Royal Astronomical Society | 2012

Galaxy And Mass Assembly (GAMA): Structural Investigation of Galaxies via Model Analysis

Lee S. Kelvin; Simon P. Driver; Aaron S. G. Robotham; D. T. Hill; Mehmet Alpaslan; Ivan K. Baldry; Steven P. Bamford; Joss Bland-Hawthorn; Sarah Brough; Alister W. Graham; Boris Häussler; Andrew M. Hopkins; J. Liske; Jon Loveday; Peder Norberg; Steven Phillipps; Cristina Popescu; M. Prescott; Edward N. Taylor; Richard J. Tuffs

We present single-Sersic two-dimensional (2D) model fits to 167 600 galaxies modelled independently in the ugrizYJHK bandpasses using reprocessed Sloan Digital Sky Survey Data Release Seven (SDSS DR7) and UKIRT Infrared Deep Sky Survey Large Area Survey imaging data available from the Galaxy And Mass Assembly (GAMA) data base. In order to facilitate this study we developed Structural Investigation of Galaxies via Model Analysis (sigma), an r wrapper around several contemporary astronomy software packages including source extractor, psf extractor and galfit 3. sigma produces realistic 2D model fits to galaxies, employing automatic adaptive background subtraction and empirical point spread function measurements on the fly for each galaxy in GAMA. Using these results, we define a common coverage area across the three GAMA regions containing 138 269 galaxies. We provide Sersic magnitudes truncated at 10re which show good agreement with SDSS Petrosian and GAMA photometry for low Sersic index systems (n 4), recovering as much as Δm= 0.5 mag in the r band. We employ a K-band Sersic index/u−r colour relation to delineate the massive (n > ∼2) early-type galaxies (ETGs) from the late-type galaxies (LTGs). The mean Sersic index of these ETGs shows a smooth variation with wavelength, increasing by 30 per cent from g through K. LTGs exhibit a more extreme change in Sersic index, increasing by 52 per cent across the same range. In addition, ETGs and LTGs exhibit a 38 and 25 per cent decrease, respectively, in half-light radius from g through K. These trends are shown to arise due to the effects of dust attenuation and stellar population/metallicity gradients within galaxy populations.


Monthly Notices of the Royal Astronomical Society | 2013

Galaxy And Mass Assembly (GAMA): spectroscopic analysis

Andrew M. Hopkins; Simon P. Driver; Sarah Brough; Matt S. Owers; Amanda E. Bauer; M. L. P. Gunawardhana; Michelle E. Cluver; Matthew Colless; Caroline Foster; M. A. Lara-Lopez; I. G. Roseboom; Rob Sharp; Oliver Steele; Daniel Thomas; Ivan K. Baldry; Michael J. I. Brown; J. Liske; Peder Norberg; Aaron S. G. Robotham; Steven P. Bamford; Joss Bland-Hawthorn; Michael J. Drinkwater; Jon Loveday; Martin Meyer; J. A. Peacock; Richard J. Tuffs; Nicola K. Agius; Mehmet Alpaslan; E. Andrae; E. Cameron

The Galaxy And Mass Assembly (GAMA) survey is a multiwavelength photometric and spectroscopic survey, using the AAOmega spectrograph on the Anglo-Australian Telescope to obtain spectra for up to ∼300 000 galaxies over 280 deg2, to a limiting magnitude of rpet < 19.8 mag. The target galaxies are distributed over 0 < z ≲ 0.5 with a median redshift of z ≈ 0.2, although the redshift distribution includes a small number of systems, primarily quasars, at higher redshifts, up to and beyond z = 1. The redshift accuracy ranges from σv ≈ 50 km s−1 to σv ≈ 100 km s−1 depending on the signal-to-noise ratio of the spectrum. Here we describe the GAMA spectroscopic reduction and analysis pipeline. We present the steps involved in taking the raw two-dimensional spectroscopic images through to flux-calibrated one-dimensional spectra. The resulting GAMA spectra cover an observed wavelength range of 3750 ≲ λ ≲ 8850 A at a resolution of R ≈ 1300. The final flux calibration is typically accurate to 10–20 per cent, although the reliability is worse at the extreme wavelength ends, and poorer in the blue than the red. We present details of the measurement of emission and absorption features in the GAMA spectra. These measurements are characterized through a variety of quality control analyses detailing the robustness and reliability of the measurements. We illustrate the quality of the measurements with a brief exploration of elementary emission line properties of the galaxies in the GAMA sample. We demonstrate the luminosity dependence of the Balmer decrement, consistent with previously published results, and explore further how Balmer decrement varies with galaxy mass and redshift. We also investigate the mass and redshift dependencies of the [N II]/Hα versus [O III]/Hβ spectral diagnostic diagram, commonly used to discriminate between star forming and nuclear activity in galaxies.


Monthly Notices of the Royal Astronomical Society | 2013

MegaMorph – multiwavelength measurement of galaxy structure: complete Sérsic profile information from modern surveys

Boris Haeussler; Steven P. Bamford; Marina Vika; Alex L. Rojas; Marco Barden; Lee S. Kelvin; Mehmet Alpaslan; Aaron S. G. Robotham; Simon P. Driver; Ivan K. Baldry; Sarah Brough; Andrew M. Hopkins; J. Liske; Robert C. Nichol; Cristina Popescu; Richard J. Tuffs

In this paper, we demonstrate a new method for fitting galaxy p rofiles which makes use of the full multi-wavelength data provided by modern large optical-near-infrared imaging sur- veys. We present a new version of GALAPAGOS, which utilises a recently-developed multi- wavelength version of GALFIT, and enables the automated measurement of wavelength- dependent Sersic profile parameters for very large samples of galaxies. Our new technique is extensively tested to assess the reliability of both pieces of software, GALFIT and GALAPAGOS on both real ugrizY JHK imaging data from the GAMA survey and simulated data made to the same specifications. We find that fitting galaxy light profi les with multi-wavelength data increases the stability and accuracy of the measured parameters, and hence produces more complete and meaningful multi-wavelength photometry than has been available previously. The improvement is particularly significant for magnitudes in low S/N bands and for struc- tural parameters like half-light radius re and Sersic index n for which a prior is used by constraining these parameters to a polynomial as a function of wavelength. This allows the fitting routines to push the magnitude of galaxies for which s ensible values can be derived to fainter limits. The technique utilises a smooth transiti on of galaxy parameters with wave- length, creating more physically meaningful transitions t han single-band fitting and allows accurate interpolation between passbands, perfect for der ivation of rest-frame values.


Monthly Notices of the Royal Astronomical Society | 2014

Galaxy and mass assembly (GAMA) : AUTOZ spectral redshift measurements, confidence and errors

Ivan K. Baldry; Mehmet Alpaslan; Amanda E. Bauer; Joss Bland-Hawthorn; Sarah Brough; Michelle E. Cluver; Scott M. Croom; Luke J. M. Davies; Simon P. Driver; M. L. P. Gunawardhana; Benne W. Holwerda; Andrew M. Hopkins; Lee S. Kelvin; J. Liske; A. R. Lopez-Sanchez; Jon Loveday; Peder Norberg; J. A. Peacock; Aaron S. G. Robotham; Edward N. Taylor

The Galaxy And Mass Assembly (GAMA) survey has obtained spectra of over 230 000 targets using the Anglo-Australian Telescope. To homogenize the redshift measurements and improve the reliability, a fully automatic redshift code was developed (AUTOZ). The measurements were made using a cross-correlation method for both the absorption- and the emission-line spectra. Large deviations in the high-pass-filtered spectra are partially clipped in order to be robust against uncorrected artefacts and to reduce the weight given to single-line matches. A single figure of merit (FOM) was developed that puts all template matches on to a similar confidence scale. The redshift confidence as a function of the FOM was fitted with a tanh function using a maximum likelihood method applied to repeat observations of targets. The method could be adapted to provide robust automatic redshifts for other large galaxy redshift surveys. For the GAMA survey, there was a substantial improvement in the reliability of assigned redshifts and in the lowering of redshift uncertainties with a median velocity uncertainty of 33kms −1 .


Monthly Notices of the Royal Astronomical Society | 2015

Galaxy And Mass Assembly (GAMA): mass–size relations of z < 0.1 galaxies subdivided by Sérsic index, colour and morphology

Rebecca Lange; Simon P. Driver; Aaron S. G. Robotham; Lee S. Kelvin; Alister W. Graham; Mehmet Alpaslan; Stephen K. Andrews; Ivan K. Baldry; Steven P. Bamford; Joss Bland-Hawthorn; Sarah Brough; Michelle E. Cluver; Christopher J. Conselice; Luke J. M. Davies; Boris Haeussler; I. S. Konstantopoulos; Jon Loveday; Amanda J. Moffett; Peder Norberg; Steven Phillipps; Edward N. Taylor; A. R. Lopez-Sanchez; Stephen M. Wilkins

We use data from the Galaxy And Mass Assembly (GAMA) survey in the redshift range 0.01 < z < 0.1 (8399 galaxies in g to Ks bands) to derive the stellar mass–half-light radius relations for various divisions of ‘early’- and ‘late’-type samples. We find that the choice of division between early and late (i.e. colour, shape, morphology) is not particularly critical; however, the adopted mass limits and sample selections (i.e. the careful rejection of outliers and use of robust fitting methods) are important. In particular, we note that for samples extending to low stellar mass limits (<1010M⊙) the Sersic index bimodality, evident for high-mass systems, becomes less distinct and no-longer acts as a reliable separator of early- and late-type systems. The final set of stellar mass–half-light radius relations are reported for a variety of galaxy population subsets in 10 bands (ugrizZY JHKs) and are intended to provide a comprehensive low-z benchmark for the many ongoing high-z studies. Exploring the variation of the stellar mass–half-light radius relations with wavelength, we confirm earlier findings that galaxies appear more compact at longer wavelengths albeit at a smaller level than previously noted: at 1010M⊙ both spiral systems and ellipticals show a decrease in size of 13 per cent from g to Ks (which is near linear in log wavelength). Finally, we note that the sizes used in this work are derived from 2D Sersic light profile fitting (using GALFIT3), i.e. elliptical semimajor half-light radii, improving on earlier low-z benchmarks based on circular apertures.


Monthly Notices of the Royal Astronomical Society | 2015

Dark matter halo properties of GAMA galaxy groups from 100 square degrees of KiDS weak lensing data

Massimo Viola; Marcello Cacciato; Margot M. Brouwer; Konrad Kuijken; Henk Hoekstra; Peder Norberg; Aaron S. G. Robotham; E. van Uitert; Mehmet Alpaslan; Ivan K. Baldry; Ami Choi; J. T. A. de Jong; Simon P. Driver; T. Erben; A. Grado; Alister W. Graham; Catherine Heymans; Hendrik Hildebrandt; Andrew M. Hopkins; Nancy Irisarri; Benjamin Joachimi; Jon Loveday; Lance Miller; Reiko Nakajima; Peter Schneider; Cristóbal Sifón; G. Verdoes Kleijn

The Kilo-Degree Survey is an optical wide-field survey designed to map the matter distribution in the Universe using weak gravitational lensing. In this paper, we use these data to measure the density profiles and masses of a sample of ∼1400 spectroscopically identified galaxy groups and clusters from the Galaxy And Mass Assembly survey. We detect a highly significant signal (signal-to-noise-ratio ∼120), allowing us to study the properties of dark matter haloes over one and a half order of magnitude in mass, from M ∼ 1013–1014.5 h−1 M⊙. We interpret the results for various subsamples of groups using a halo model framework which accounts for the mis-centring of the brightest cluster galaxy (used as the tracer of the group centre) with respect to the centre of the groups dark matter halo. We find that the density profiles of the haloes are well described by an NFW profile with concentrations that agree with predictions from numerical simulations. In addition, we constrain scaling relations between the mass and a number of observable group properties. We find that the mass scales with the total r-band luminosity as a power law with slope 1.16 ± 0.13 (1σ) and with the group velocity dispersion as a power law with slope 1.89 ± 0.27 (1σ). Finally, we demonstrate the potential of weak lensing studies of groups to discriminate between models of baryonic feedback at group scales by comparing our results with the predictions from the Cosmo-OverWhelmingly Large Simulations project, ruling out models without AGN feedback.


Monthly Notices of the Royal Astronomical Society | 2012

Galaxy And Mass Assembly (GAMA) : the 0.013 < z < 0.1 cosmic spectral energy distribution from 0.1 μm to 1 mm

Simon P. Driver; Aaron S. G. Robotham; Lee S. Kelvin; Mehmet Alpaslan; Ivan K. Baldry; Steven P. Bamford; S. Brough; Michael J. I. Brown; Andrew M. Hopkins; J. Liske; J. Loveday; Peder Norberg; J. A. Peacock; E. Andrae; J. Bland-Hawthorn; N. Bourne; E. Cameron; M. Colless; Christopher J. Conselice; Scott M. Croom; Loretta Dunne; Carlos S. Frenk; Alister W. Graham; M. L. P. Gunawardhana; D. T. Hill; D. H. Jones; K. Kuijken; Barry F. Madore; Robert C. Nichol; H. R. Parkinson

We use the Galaxy And Mass Assembly survey (GAMA) I data set combined with GALEX, Sloan Digital Sky Survey (SDSS) and UKIRT Infrared Deep Sky Survey (UKIDSS) imaging to construct the low-redshift (z < 0.1) galaxy luminosity functions in FUV, NUV, ugriz and YJHK bands from within a single well-constrained volume of 3.4 × 105 (Mpc h−1)3. The derived luminosity distributions are normalized to the SDSS data release 7 (DR7) main survey to reduce the estimated cosmic variance to the 5 per cent level. The data are used to construct the cosmic spectral energy distribution (CSED) from 0.1 to 2.1 μm free from any wavelength-dependent cosmic variance for both the elliptical and non-elliptical populations. The two populations exhibit dramatically different CSEDs as expected for a predominantly old and young population, respectively. Using the Driver et al. prescription for the azimuthally averaged photon escape fraction, the non-ellipticals are corrected for the impact of dust attenuation and the combined CSED constructed. The final results show that the Universe is currently generating (1.8 ± 0.3) × 1035 h W Mpc−3 of which (1.2 ± 0.1) × 1035 h W Mpc−3 is directly released into the inter-galactic medium and (0.6 ± 0.1) × 1035 h W Mpc−3 is reprocessed and reradiated by dust in the far-IR. Using the GAMA data and our dust model we predict the mid- and far-IR emission which agrees remarkably well with available data. We therefore provide a robust description of the pre- and post-dust attenuated energy output of the nearby Universe from 0.1 μm to 0.6 mm. The largest uncertainty in this measurement lies in the mid- and far-IR bands stemming from the dust attenuation correction and its currently poorly constrained dependence on environment, stellar mass and morphology.


Monthly Notices of the Royal Astronomical Society | 2015

Galaxy And Mass Assembly (GAMA): deconstructing bimodality – I. Red ones and blue ones

Edward N. Taylor; Andrew M. Hopkins; Ivan K. Baldry; J. Bland-Hawthorn; Michael J. I. Brown; Matthew Colless; Simon P. Driver; Peder Norberg; Aaron S. G. Robotham; Mehmet Alpaslan; Sarah Brough; Michelle E. Cluver; M. L. P. Gunawardhana; Lee S. Kelvin; J. Liske; Christopher J. Conselice; Scott M. Croom; Caroline Foster; Thomas Harold Jarrett; M. A. Lara-Lopez; J. Loveday

We measure the mass functions for generically red and blue galaxies, using a z 8.7 field galaxies from the Galaxy And Mass Assembly (GAMA) survey. Our motivation is that, as we show, the dominant uncertainty in existing measurements stems from how ‘red’ and ‘blue’ galaxies have been selected/defined. Accordingly, we model our data as two naturally overlapping populations, each with their own mass function and colour–mass relation, which enables us characterize the two populations without having to specify a priori which galaxies are ‘red’ and ‘blue’. Our results then provide the means to derive objective operational definitions for the terms ‘red’ and ‘blue’, which are based on the phenomenology of the colour–mass diagrams. Informed by this descriptive modelling, we show that (1) after accounting for dust, the stellar colours of ‘blue’ galaxies do not depend strongly on mass; (2) the tight, flat ‘dead sequence’ does not extend much below log M* ∼ 10.5; instead, (3) the stellar colours of ‘red’ galaxies vary rather strongly with mass, such that lower mass ‘red’ galaxies have bluer stellar populations; (4) below log M* ∼ 9.3, the ‘red’ population dissolves into obscurity, and it becomes problematic to talk about two distinct populations; as a consequence, (5) it is hard to meaningfully constrain the shape, including the existence of an upturn, of the ‘red’ galaxy mass function below log M* ∼ 9.3. Points 1–4 provide meaningful targets for models of galaxy formation and evolution to aim for.


Monthly Notices of the Royal Astronomical Society | 2016

Galaxy And Mass Assembly (GAMA): Panchromatic Data Release (far-UV-far-IR) and the low-z energy budget

Simon P. Driver; A. H. Wright; Stephen K. Andrews; Luke J. M. Davies; Prajwal R. Kafle; Rebecca Lange; Amanda J. Moffett; Elizabeth Mannering; Aaron S. G. Robotham; Kevin Vinsen; Mehmet Alpaslan; E. Andrae; Ivan K. Baldry; Amanda E. Bauer; Steven P. Bamford; Joss Bland-Hawthorn; N. Bourne; Sarah Brough; Michael J. I. Brown; Michelle E. Cluver; Scott M. Croom; Matthew Colless; Christopher J. Conselice; Elisabete da Cunha; Roberto De Propris; Michael J. Drinkwater; Loretta Dunne; Stephen Anthony Eales; A. C. Edge; Carlos S. Frenk

We present the Galaxy And Mass Assembly (GAMA) Panchromatic Data Release (PDR) constituting over 230 deg2 of imaging with photometry in 21 bands extending from the far-UV to the far-IR. These data complement our spectroscopic campaign of over 300k galaxies, and are compiled from observations with a variety of facilities including: GALaxy Evolution eXplorer, Sloan Digital Sky Survey, Visible and Infrared Telescope for Astronomy (VISTA), Wide-field Infrared Survey Explorer, and Herschel, with the GAMA regions currently being surveyed by VLT Survey Telescope (VST) and scheduled for observations by Australian Square Kilometer Array Pathfinder (ASKAP). These data are processed to a common astrometric solution, from which photometry is derived for ∼221 373 galaxies with r < 19.8 mag. Online tools are provided to access and download data cutouts, or the full mosaics of the GAMA regions in each band. We focus, in particular, on the reduction and analysis of the VISTA VIsta Kilo-degree INfrared Galaxy data, and compare to earlier data sets (i.e. 2MASS and UKIDSS) before combining the data and examining its integrity. Having derived the 21-band photometric catalogue, we proceed to fit the data using the energy balance code magphys. These measurements are then used to obtain the first fully empirical measurement of the 0.1–500 μm energy output of the Universe. Exploring the cosmic spectral energy distribution across three time-intervals (0.3–1.1, 1.1–1.8, and 1.8–2.4 Gyr), we find that the Universe is currently generating (1.5 ± 0.3) × 1035 h70 W Mpc−3, down from (2.5 ± 0.2) × 1035 h70 W Mpc−3 2.3 Gyr ago. More importantly, we identify significant and smooth evolution in the integrated photon escape fraction at all wavelengths, with the UV escape fraction increasing from 27(18) per cent at z = 0.18 in NUV(FUV) to 34(23) per cent at z = 0.06. The GAMA PDR can be found at: http://gama-psi.icrar.org/.

Collaboration


Dive into the Mehmet Alpaslan's collaboration.

Top Co-Authors

Avatar

Simon P. Driver

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Aaron S. G. Robotham

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah Brough

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivan K. Baldry

Liverpool John Moores University

View shared research outputs
Top Co-Authors

Avatar

Michelle E. Cluver

University of the Western Cape

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lee S. Kelvin

Liverpool John Moores University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge