Mehmet Karadayi
Atatürk University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mehmet Karadayi.
Journal of Food Science | 2011
Ozlem Baris; Mehmet Karadayi; Derya Yanmis; Zühal Güvenalp; Tugba Bal; Medine Gulluce
UNLABELLED Flavonoids, abundant in most of plant species, are widely used in medicine and development studies on phytotherapeutic drugs due to their various biological activities. In the present study, 3 flavonoids, apigenin-7-O-glucoside, apigenin-7-O-rutinoside, and apigenin-7-O-glucuronide, were isolated from Mentha longifolia (L.) Hudson subsp. longifolia by using E. coli WP2 genotoxicity assay guided fractionation procedures. Later, the mutagenic and antimutagenic properties of each flavonoid were evaluated by using the same genotoxicity assay. The results showed that all the test compounds have significant antimutagenic activity at tested concentrations with or without S9 activation. The inhibition rates were between 25.3% (apigenin-7-O-glucoside with S9-2.0 μM/plate) and 59.0% (apigenin-7-O-rutinoside without S9-2.0 μM/plate). In conclusion, the results revealed that the 3 flavonoids from Mentha longifolia (L.) Hudson subsp. longifolia have significant antimutagenic activity, and the findings of the present study are valuable for further investigations, focus on the phytotherapeutic drug discovery. PRACTICAL APPLICATION Apigenin derivatives can be thought as genetically safe at tested concentrations because they did not show mutagenic activity. Furthermore, they have also significant antimutagenic activity. These are valuable for further research focus on phytotherapeutic drug discovery and development.
Dalton Transactions | 2014
Sibel Koçer; Serhan Uruş; Ahmet Cakir; Medine Gulluce; Metin Digrak; Yusuf Alan; Ali Aslan; Mehmet Tümer; Mehmet Karadayi; Cavit Kazaz; Hakan Dal
Novel multifunctional hydroxyphenylimino ligands (L1, L2 and L3) were synthesized by the condensation of 2-aminophenol, 3-aminophenol and 4-aminophenol with usnic acid, a lichen metabolite. The synthesized ligands and their Cu(II), Co(II), Ni(II) and Mn(II) complexes were characterized using FT-IR, UV-Vis, (1)H-NMR, (13)C-NMR, 1D- and 2D NMR (DEPT, COSY, HMQC and HMBC), LC-MS and TGA. In addition, the metal complexes of the novel ligands were prepared with high yields using Cu(II), Co(II), Ni(II) and Mn(II) salts and were characterized using the FT-MIR/FAR, UV-Vis, elemental analysis, ICP-OES and TG/DTA techniques. The ligands and their complexes were tested against ten important pathogen microorganisms using the disc diffusion method and the metal complexes of the ligands were more active against all of the microorganisms tested with a broad spectrum than the ligands exhibiting 11–32 mm inhibition zones. On the other hand, a broad spectrum of the strongest antimicrobial activity was determined for the Mn(II) and Cu(II) complexes of the hydroxyphenylimino ligand with usnic acid (L3). In addition, the antimutagenic activities of all of the ligands and their metal complexes were determined using the Ames-Salmonella and E. coli WP2 microbial assay systems and they showed varied and strong antimutagenic effects. In general, it has been found that the Co and Mn complexes of the ligands possess potent antimutagenic activity. In view of these results, it can be concluded that some metal complexes can be used as antimicrobial and anticancer agents.
Toxicology and Industrial Health | 2011
Medine Gulluce; Guleray Agar; Ali Aslan; Mehmet Karadayi; Sedat Bozari; Furkan Orhan
Lichens and their various extracts have been occasionally used in the treatment of many diseases. Cladonia rangiformis and Umbilicaria vellea are two important species of these lichens and they have several biological activities. In the present study, methanol extracts of these lichens, which are grown in the Eastern Anatolia Region of Turkey, were isolated, and their mutagenic and antimutagenic properties were investigated by using AMES-Salmonella and Zea mays Root Tip Mitotic Index mutagenicity and antimutagenicity assay systems. Known mutagens sodium azide (NaN3) and 9-Aminoacridine (9-AA) were used to determine antimutagenic properties of methanol extracts. The results showed that all methanol extracts, investigated in the present study, can be considered genotoxically safe because they do not have mutagenic activity at the tested concentrations. Besides, all of them have antimutagenic activity against 9-AA known as a model intercalator agent in the AMES-Salmonella test system. The inhibition rates obtained from the antimutagenicity assays ranged from 37.07% (C. rangiformis—5 µg/plate) to 54.39% (C. rangiformis—5 µg/plate). Furthermore, all the methanol extracts have significant antimutagenic activity against NaN3 mutagenicity in Z. mays Root Tip Mitotic Index assay system. These activities are valuable towards an extension of the employ of these drugs as new phytotherapeutic or preservative ingredients.
Journal of Biochemical and Molecular Toxicology | 2012
S. Arda Ozturkcan; Kadir Turhan; Zuhal Turgut; Mehmet Karadayi; Medine Gulluce
The aim of this study was to determine the antigenotoxic potential of two newly synthesized β‐aminoketones against N‐methyl‐N′‐nitro‐N‐nitrosoguanidine (MNNG) and 9‐aminoacridine (9‐AA)‐induced mutagenesis. The mutant bacterial tester strains were MNNG‐sensitive Escherichia coli WP2 uvrA and 9‐AA‐sensitive Salmonella typhimurium TA1537. Both test compounds showed significant antimutagenic activity at various tested concentrations. The inhibition rates ranged from 29.5% (compound 1: 2 mM/plate) to 47.5% (compound 2: 1.5 mM/plate) for MNNG and from 25.0% (compound 2: 1 mM/plate) to 52.1% (compound 2: 2.5 mM/plate) for 9‐AA genotoxicity. Moreover, the mutagenicity of the test compounds was investigated by using the same strains. Neither test compound has mutagenic properties on the bacterial strains at the tested concentrations. Thus, the findings of the present study give valuable information about chemical prevention from MNNG and 9‐AA genotoxicity by using synthetic β‐aminoketones.
Toxicology and Industrial Health | 2012
Kadir Turhan; S. Arda Ozturkcan; Zuhal Turgut; Mehmet Karadayi; Medine Gulluce
The current study aims to determine the antimutagenic potential of five newly synthesized cyclic compounds against the genotoxic agents sodium azide (NaN3) and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). The mutant bacterial tester strains were NaN3-sensitive Salmonella typhimurium TA1535 and MNNG-sensitive Escherichia coli WP2uvrA. According to the results, all the test compounds showed significant antimutagenic activity. The inhibition rates ranged from 26.05% (Compound 4—1 µg/plate) to 68.54% (Compound 5—0.01 µg/plate) for NaN3 and from 32.44% (Compound 3—1 µg/plate) to 60.77% (Compound 5—1 µg/plate) for MNNG genotoxicity. Moreover, the mutagenic potential of the test compounds was investigated using the same strains. The results showed that all the test compounds do not have mutagenic potential on the bacterial strains at the tested concentrations. Thus, the findings of the present study give valuable information about chemical prevention from NaN3 and MNNG genotoxicity.
Cytology and Genetics | 2012
Ali Aslan; Medine Gulluce; Guleray Agar; Mehmet Karadayi; Sedat Bozari; Furkan Orhan
All the methanol extracts did not show mutagenic activity in Ames/Salmonella and Z. mays MI test systems. Furthermore, some extracts showed significant antimutagenic activity against 9-AA in Ames test system. Inhibition rates for 9-AA mutagenicity ranged from 25.51% (P. furfuracea—0.05 μg/plate) to 66.14% (C. islandica—0.05 μg/plate). In addition, all of the extracts showed significant antimutagenic activity against sodium azide (NaN3) mutagenicity on MI values of Z. mays.
Toxicology and Industrial Health | 2015
S. Arda Ozturkcan; Kadir Turhan; Zuhal Turgut; Mehmet Karadayi; Medine Gulluce
Direct-type catalytic Mannich reaction for the synthesis of β-aminoketones from cyclohexanone, substituted aromatic amines and aromatic or hetero-aromatic aldehydes has been applied in water with bismuth triflate under ultrasound. Good yields of the expected β-aminoketones were obtained from available substrates, at room temperature in 1–2 hours. This study was designed to evaluate the mutagenic and antimutagenic potential of synthesized β-aminoketones compounds using Ames/Salmonella and Escherichia coli WP2 bacterial reverse mutation assay systems.
Pharmaceutical Biology | 2015
Zühal Güvenalp; Hilal Özbek; Mehmet Karadayi; Medine Gulluce; Ayşe Kuruüzüm-Uz; Bekir Salih; Ömür L. Demirezer
Abstract Context: Mentha L. (Labiatae) species (mint) with their flavoring properties have been used in food industries for centuries. Besides they have a great importance in drug development and medicinal applications due to various bioactive compounds of several members of the genus. Objective: The aim of this study was to isolate bioactive compounds with antimutagenic potential by bio-guided fractionation and determine their structures by spectroscopic methods. Materials and methods: The structural elucidation of the isolated compounds was done based on spectroscopic methods, including MALDI-MS, UV, IR, and 2D NMR experiments, and the bio-guided fractionation process was done by using the Ames/Salmonella test system. Henceforth, solely genotoxic and antigenotoxic potential of the new compounds were also confirmed up to 2 µM/plate by using the same test system. Results: Two new chalcone glycosides: (βR)-β,3,2′,6′-tetrahydroxy-4-methoxy-4′-O-rutinosyldihydrochalcone and (βR)-β,4,2′,6′-tetrahydroxy-4′-O-rutinosyldihydrochalcone, were isolated from Mentha longifolia (L.) Hudson subsp. longifolia, together with known six flavonoid glycosides and one phenolic acid: apigenin-7-O-glucoside, luteolin-7-O-glucoside, apigenin-7-O-rutinoside, luteolin-7-O-rutinoside, apigenin-7-O-glucuronide, luteolin-7-O-glucuronide, rosmarinic acid. According to the antimutagenicity results, both new test compounds significantly inhibited the mutagenic activity of 9-aminoacridine in a dose-dependent manner at the tested concentrations from 0.8 to 2 µM/plate. (βR)-β,4,2′,6′-Tetrahydroxy-4′-O-rutinosyldihydrochalcone showed the maximum inhibition rate as 75.94% at 2 µM/plate concentration. Conclusions: This is the first report that two new chalcone glycosides were isolated from Mentha longifolia subsp. longifolia and their antimutagenic potentials by using mutant bacterial tester strains. In conclusion, the two new chalcone glycosides showed a significant antigenotoxic effect on 9-aminoacridine-induced mutagenesis at tested concentrations.
Toxicology and Industrial Health | 2014
Hakan Ozkan; Derya Yanmis; Mehmet Karadayi; Tugba Bal; Ozlem Baris; Medine Gulluce
The essential oils having many application fields such as medicine, flavoring, cosmetics are natural products obtained from aromatic plants. As the natural products of Ferula species have a wide range of use in folk medicine, this study was planned to evaluate the mutagenic and antimutagenic activities of essential oils of leaves and flowers of Ferula orientalis grown in Erzurum, through the bacterial reverse mutation assay. Furthermore, the chemical compositions of essential oils isolated by the hyrodistillation method were analysed by gas chromatography (GC) and gas chromatography–mass spectroscopy (GC-MS), as their biological activities were connected to their contents. According to our results, any tested essential oil at any used concentration on Salmonella typhimurium TA1535 and TA1537 strains and in Escherichia coli WP2 uvrA strain showed no mutagenic activity. However, the tested materials at different concentrations showed antimutagenic activities against the used mutagens. The inhibition rates ranged against sodium azide (NaN3) on S. typhimurium TA1535 from 29% to 36%, against 9-aminoacridine (9-AA) on S. typhimurium TA1537 from 40% to 68% and against N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) on E. coli WP2 uvrA from 23% to 52%, respectively. Also, it is revealed by GC and GC/MS analysis of the essential oils isolated from the leaves and flowers, respectively. The major compounds in these oils were determined as α-cadinol, δ-cadinene and germacrene D-4-ol. The results of this study indicate that as the essential oils of F. orientalis have many constituents, they show no mutagenic activity but significant antimutagenic activity, and these materials can be safely used in medicinal applications after further investigations.
Toxicology and Industrial Health | 2014
Kadir Turhan; S. Arda Ozturkcan; Zuhal Turgut; Mehmet Karadayi; Ali Aslan; Medine Gulluce
The current study aims to determine the genotoxic and antigenotoxic potential of four newly synthesized dihydropyridine derivatives using Escherichia coli WP2 and Ames/Salmonella bacterial reversion assay systems. The bacterial mutant tester strains, E. coli WP2uvrA with a point mutation and Salmonella typhimurium TA1537 with a frameshift mutation, were used to determine genotoxic potentials of the test compounds. To determine antigenotoxic potentials of the test compounds, the same strains were also used together with positive mutagens N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) for E. coli WP2uvrA and 9-aminoacridine (9-AA) for S. typhimurium TA1537. According to the results, neither of the test compounds showed significant genotoxic activity on both tester strains at the tested concentrations. However, except compound 4, all the test compounds showed significant antigenotoxic activity on MNNG- or/and 9-AA-induced mutations. The inhibition rates of mutagenesis ranged from 27.0% (compound 2: 2.5 mM/plate) to 65.0% (compound 2: 0.5 mM/plate) for MNNG and from 30.6% (compound 2: 2 mM/plate) to 58.5% (compound 1: 1 mM/plate) for 9-AA genotoxicity. According to these results, it is concluded that all the test compounds do not have a mutagenic potential on the bacterial strains at the tested concentrations, and some of them have antigenotoxic potentials against MNNG- and 9-AA-induced mutagenesis.