Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mehmet Kesimer is active.

Publication


Featured researches published by Mehmet Kesimer.


Science | 2012

A Periciliary Brush Promotes the Lung Health by Separating the Mucus Layer from Airway Epithelia

Brian Button; Li Heng Cai; Camille Ehre; Mehmet Kesimer; David B. Hill; John K. Sheehan; Richard C. Boucher; Michael Rubinstein

Sticky Mucus? Mucus—experienced, for example, in the form of a runny nose or productive cough—is one of the tools the body uses to expel or prevent the uptake of foreign matter. In a number of diseases, a failure of the normal mucus-control system leads to obstructions of the airways and respiratory problems. Button et al. (p. 937; see the Perspective by Dickey) examine the existing gel-on-liquid model, where the mucus is thought to sit on a watery periciliary layer around the beating lung cilia that has been used to explain the flow of mucus. A gel-on-brush model is proposed where the mucus sits on a brushlike periciliary layer. The key elements of this layer are membrane-tethered macromolecules that cause normal flow and clearance of mucus. When dehydrated, the interface is disrupted, preventing normal mucus motion. The lung is protected by a brushlike biopolymer that contributes to mucus flow and can trigger muco-obstructive diseases. Mucus clearance is the primary defense mechanism that protects airways from inhaled infectious and toxic agents. In the current gel-on-liquid mucus clearance model, a mucus gel is propelled on top of a “watery” periciliary layer surrounding the cilia. However, this model fails to explain the formation of a distinct mucus layer in health or why mucus clearance fails in disease. We propose a gel-on-brush model in which the periciliary layer is occupied by membrane-spanning mucins and mucopolysaccharides densely tethered to the airway surface. This brush prevents mucus penetration into the periciliary space and causes mucus to form a distinct layer. The relative osmotic moduli of the mucus and periciliary brush layers explain both the stability of mucus clearance in health and its failure in airway disease.


Journal of Immunology | 2005

Reduced Three-Dimensional Motility in Dehydrated Airway Mucus Prevents Neutrophil Capture and Killing Bacteria on Airway Epithelial Surfaces

Hirotoshi Matsui; Margrith W. Verghese; Mehmet Kesimer; Ute Schwab; Scott H. Randell; John K. Sheehan; Barbara R. Grubb; Richard C. Boucher

Cystic fibrosis (CF) lung disease is characterized by persistent lung infection. Thickened (concentrated) mucus in the CF lung impairs airway mucus clearance, which initiates bacterial infection. However, airways have other mechanisms to prevent bacterial infection, including neutrophil-mediated killing. Therefore, we examined whether neutrophil motility and bacterial capture and killing functions are impaired in thickened mucus. Mucus of three concentrations, representative of the range of normal (1.5 and 2.5% dry weight) and CF-like thickened (6.5%) mucus, was obtained from well-differentiated human bronchial epithelial cultures and prepared for three-dimensional studies of neutrophil migration. Neutrophil chemotaxis in the direction of gravity was optimal in 1.5% mucus, whereas 2.5% mucus best supported neutrophil chemotaxis against gravity. Lateral chemokinetic movement was fastest on airway epithelial surfaces covered with 1.5% mucus. In contrast, neutrophils exhibited little motility in any direction in thickened (6.5%) mucus. In in vivo models of airway mucus plugs, neutrophil migration was inhibited by thickened mucus (CF model) but not by normal concentrations of mucus (“normal” model). Paralleling the decreased neutrophil motility in thickened mucus, bacterial capture and killing capacity were decreased in CF-like thickened mucus. Similar results with each mucus concentration were obtained with mucus from CF cultures, indicating that inhibition of neutrophil functions was mucus concentration dependent not CF source dependent. We conclude that concentrated (“thick”) mucus inhibits neutrophil migration and killing and is a key component in the failure of defense against chronic airways infection in CF.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2009

Tracheobronchial air-liquid interface cell culture: A model for innate mucosal defense of the upper airways?

Mehmet Kesimer; Sara Kirkham; Raymond J. Pickles; Ashley G. Henderson; Neil E. Alexis; Genevieve DeMaria; David Knight; David J. Thornton; John K. Sheehan

Human tracheobronchial epithelial cells grown in air-liquid interface culture have emerged as a powerful tool for the study of airway biology. In this study, we have investigated whether this culture system produces “mucus” with a protein composition similar to that of in vivo, induced airway secretions. Previous compositional studies of mucous secretions have greatly underrepresented the contribution of mucins, which are major structural components of normal mucus. To overcome this limitation, we have used a mass spectrometry-based approach centered on prior separation of the mucins from the majority of the other proteins. Using this approach, we have compared the protein composition of apical secretions (AS) from well-differentiated primary human tracheobronchial cells grown at air-liquid interface and human tracheobronchial normal induced sputum (IS). A total of 186 proteins were identified, 134 from AS and 136 from IS; 84 proteins were common to both secretions, with host defense proteins being predominant. The epithelial mucins MUC1, MUC4, and MUC16 and the gel-forming mucins MUC5B and MUC5AC were identified in both secretions. Refractometry showed that the gel-forming mucins were the major contributors by mass to both secretions. When the composition of the IS was corrected for proteins that were most likely derived from saliva, serum, and migratory cells, there was considerable similarity between the two secretions, in particular, in the category of host defense proteins, which includes the mucins. This shows that the primary cell culture system is an important model for study of aspects of innate defense of the upper airways related specifically to mucus consisting solely of airway cell products.


Journal of Clinical Investigation | 2014

Cystic fibrosis airway secretions exhibit mucin hyperconcentration and increased osmotic pressure

Ashley G. Henderson; Camille Ehre; Brian Button; Lubna H. Abdullah; Li Heng Cai; Margaret W. Leigh; Genevieve DeMaria; Hiro Matsui; Scott H. Donaldson; C. William Davis; John K. Sheehan; Richard C. Boucher; Mehmet Kesimer

The pathogenesis of mucoinfective lung disease in cystic fibrosis (CF) patients likely involves poor mucus clearance. A recent model of mucus clearance predicts that mucus flow depends on the relative mucin concentration of the mucus layer compared with that of the periciliary layer; however, mucin concentrations have been difficult to measure in CF secretions. Here, we have shown that the concentration of mucin in CF sputum is low when measured by immunologically based techniques, and mass spectrometric analyses of CF mucins revealed mucin cleavage at antibody recognition sites. Using physical size exclusion chromatography/differential refractometry (SEC/dRI) techniques, we determined that mucin concentrations in CF secretions were higher than those in normal secretions. Measurements of partial osmotic pressures revealed that the partial osmotic pressure of CF sputum and the retained mucus in excised CF lungs were substantially greater than the partial osmotic pressure of normal secretions. Our data reveal that mucin concentration cannot be accurately measured immunologically in proteolytically active CF secretions; mucins are hyperconcentrated in CF secretions; and CF secretion osmotic pressures predict mucus layer-dependent osmotic compression of the periciliary liquid layer in CF lungs. Consequently, mucin hypersecretion likely produces mucus stasis, which contributes to key infectious and inflammatory components of CF lung disease.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2010

Unpacking a gel-forming mucin: a view of MUC5B organization after granular release.

Mehmet Kesimer; Alexander M. Makhov; Jack D. Griffith; Pedro Verdugo; John K. Sheehan

Gel-forming mucins are the largest complex glycoprotein macromolecules in the body. They form the matrix of gels protecting all the surface epithelia and are secreted as disulfide-bonded polymeric structures. The mechanisms by which they are formed and organized within cells and thereafter released to form mucus gels are not understood. In particular, the initial rate of expansion of the mucins after release from their secretory granules is very rapid (seconds), but no clear mechanism for how it is achieved has emerged. Our major interest is in lung mucins, but most particularly in MUC5B, which is the major gel-forming mucin in mucus, and which provides its major protective matrix. In this study, using OptiPrep density gradient ultracentrifugation, we have isolated a small amount of a stable form of the recently secreted and expanding MUC5B mucin, which accounts for less than 2% of the total mucin present. It has an average mass of approximately 150 x 10(6) Da and size Rg of 150 nm in radius of gyration. In transmission electron microscopy, this compact mucin has maintained a circular structure that is characterized by flexible chains connected around protein-rich nodes as determined by their ability to bind colloidal gold. The appearance indicates that the assembled mucins in a single granular form are organized around a number of nodes, each attached to four to eight subunits. The organization of the mucins in this manner is consistent with efficient packing of a number of large heavily glycosylated monomers while still permitting their rapid unfolding and hydration. For the first time, this provides some insight into how the carbohydrate regions might be organized around the NH(2)- and COOH-terminal globular protein domains within the granule and also explains how the mucin can expand so rapidly upon its release.


Journal of Biological Chemistry | 2005

The Cystic Fibrosis Transmembrane Conductance Regulator Is Regulated by a Direct Interaction with the Protein Phosphatase 2A

William R. Thelin; Mehmet Kesimer; Robert Tarran; Silvia M. Kreda; Barbara R. Grubb; John K. Sheehan; M. Jackson Stutts; Sharon L. Milgram

The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated chloride channel expressed at the apical surface of epithelia. Although the regulation of CFTR by protein kinases is well documented, channel deactivation by phosphatases is not well understood. We find that the serine/threonine phosphatase PP2A can physically associate with the CFTR COOH terminus. PP2A is a heterotrimeric phosphatase composed of a catalytic subunit and two divergent regulatory subunits (A and B). The cellular localization and substrate specificity of PP2A is determined by the unique combination of A and B regulatory subunits, which can give rise to at least 75 different enzymes. By mass spectrometry, we identified the exact PP2A regulatory subunits associated with CFTR as Aα and B′ϵ and find that the B′ϵ subunit binds CFTR directly. PP2A subunits localize to the apical surface of airway epithelia and PP2A phosphatase activity co-purifies with CFTR in Calu-3 cells. In functional assays, inhibitors of PP2A block rundown of basal CFTR currents and increase channel activity in excised patches of airway epithelia and in intact mouse jejunum. Moreover, PP2A inhibition in well differentiated human bronchial epithelial cells results in a CFTR-dependent increase in the airway surface liquid. Our data demonstrate that PP2A is a relevant CFTR phosphatase in epithelial tissues. Our results may help reconcile differences in phosphatase-mediated channel regulation observed for different tissues and cells. Furthermore, PP2A may be a clinically relevant drug target for CF, which should be considered in future studies.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2013

Identification of the SPLUNC1 ENaC-inhibitory domain yields novel strategies to treat sodium hyperabsorption in cystic fibrosis airway epithelial cultures

Carey A. Hobbs; Maxime G. Blanchard; Omar Alijevic; Chong Da Tan; Stephan Kellenberger; Sompop Bencharit; Rui Cao; Mehmet Kesimer; William G. Walton; Ashley G. Henderson; Matthew R. Redinbo; M. Jackson Stutts; Robert Tarran

The epithelial sodium channel (ENaC) is responsible for Na(+) and fluid absorption across colon, kidney, and airway epithelia. Short palate lung and nasal epithelial clone 1 (SPLUNC1) is a secreted, innate defense protein and an autocrine inhibitor of ENaC that is highly expressed in airway epithelia. While SPLUNC1 has a bactericidal permeability-increasing protein (BPI)-type structure, its NH2-terminal region lacks structure. Here we found that an 18 amino acid peptide, S18, which corresponded to residues G22-A39 of the SPLUNC1 NH2 terminus inhibited ENaC activity to a similar degree as full-length SPLUNC1 (∼2.5 fold), while SPLUNC1 protein lacking this region was without effect. S18 did not inhibit the structurally related acid-sensing ion channels, indicating specificity for ENaC. However, S18 preferentially bound to the βENaC subunit in a glycosylation-dependent manner. ENaC hyperactivity is contributory to cystic fibrosis (CF) lung disease. Unlike control, CF human bronchial epithelial cultures (HBECs) where airway surface liquid (ASL) height was abnormally low (4.2 ± 0.6 μm), addition of S18 prevented ENaC-led ASL hyperabsorption and maintained CF ASL height at 7.9 ± 0.6 μm, even in the presence of neutrophil elastase, which is comparable to heights seen in normal HBECs. Our data also indicate that the ENaC inhibitory domain of SPLUNC1 may be cleaved away from the main molecule by neutrophil elastase, suggesting that it may still be active during inflammation or neutrophilia. Furthermore, the robust inhibition of ENaC by the S18 peptide suggests that this peptide may be suitable for treating CF lung disease.


American Journal of Respiratory and Critical Care Medicine | 2015

The relationship of mucus concentration (hydration) to mucus osmotic pressure and transport in chronic bronchitis

Wayne Anderson; Raymond D. Coakley; Brian Button; Ashley G. Henderson; Kirby L. Zeman; Neil E. Alexis; David B. Peden; Eduardo R. Lazarowski; C. William Davis; Summer L. Bailey; Fred Fuller; Martha Almond; Bahjat F. Qaqish; Elena Bordonali; Michael Rubinstein; William D. Bennett; Mehmet Kesimer; Richard C. Boucher

RATIONALE Chronic bronchitis (CB) is characterized by persistent cough and sputum production. Studies were performed to test whether mucus hyperconcentration and increased partial osmotic pressure, in part caused by abnormal purine nucleotide regulation of ion transport, contribute to the pathogenesis of CB. OBJECTIVES We tested the hypothesis that CB is characterized by mucus hyperconcentration, increased mucus partial osmotic pressures, and reduced mucus clearance. METHODS We measured in subjects with CB as compared with normal and asymptomatic smoking control subjects indices of mucus concentration (hydration; i.e., percentage solids) and sputum adenine nucleotide/nucleoside concentrations. In addition, sputum partial osmotic pressures and mucus transport rates were measured in subjects with CB. MEASUREMENTS AND RESULTS CB secretions were hyperconcentrated as indexed by an increase in percentage solids and total mucins, in part reflecting decreased extracellular nucleotide/nucleoside concentrations. CB mucus generated concentration-dependent increases in partial osmotic pressures into ranges predicted to reduce mucus transport. Mucociliary clearance (MCC) in subjects with CB was negatively correlated with mucus concentration (percentage solids). As a test of relationships between mucus concentration and disease, mucus concentrations and MCC were compared with FEV1, and both were significantly correlated. CONCLUSIONS Abnormal regulation of airway surface hydration may slow MCC in CB and contribute to disease pathogenesis.


The New England Journal of Medicine | 2017

Airway mucin concentration as a marker of chronic bronchitis

Mehmet Kesimer; Amina A. Ford; Agathe Ceppe; Giorgia Radicioni; Rui Cao; C. William Davis; Claire M. Doerschuk; Neil E. Alexis; Wayne Anderson; Ashley G. Henderson; Graham Barr; Eugene R. Bleecker; Stephanie A. Christenson; Christopher B. Cooper; MeiLan K. Han; Nadia N. Hansel; Annette T. Hastie; Eric A. Hoffman; Richard E. Kanner; Fernando J. Martinez; Rober Paine; Prescott G. Woodruff; Wanda K. O'Neal; Richard C. Boucher

BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by chronic bronchitic and emphysematous components. In one biophysical model, the concentration of mucin on the airway surfaces is hypothesized to be a key variable that controls mucus transport in healthy persons versus cessation of transport in persons with muco‐obstructive lung diseases. Under this model, it is postulated that a high mucin concentration produces the sputum and disease progression that are characteristic of chronic bronchitis. METHODS We characterized the COPD status of 917 participants from the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS) using questionnaires administered to participants, chest tomography, spirometry, and examination of induced sputum. Total mucin concentrations in sputum were measured with the use of size‐exclusion chromatography and refractometry. In 148 of these participants, the respiratory secreted mucins MUC5AC and MUC5B were quantitated by means of mass spectrometry. Data from chronic‐bronchitis questionnaires and data on total mucin concentrations in sputum were also analyzed in an independent 94‐participant cohort. RESULTS Mean (±SE) total mucin concentrations were higher in current or former smokers with severe COPD than in controls who had never smoked (3166±402 vs. 1515±152 μg per milliliter) and were higher in participants with two or more respiratory exacerbations per year than in those with zero exacerbations (4194±878 vs. 2458±113 μg per milliliter). The absolute concentrations of MUC5B and MUC5AC in current or former smokers with severe COPD were approximately 3 times as high and 10 times as high, respectively, as in controls who had never smoked. Receiver‐operating‐characteristic curve analysis of the association between total mucin concentration and a diagnosis of chronic bronchitis yielded areas under the curve of 0.72 (95% confidence interval [CI], 0.65 to 0.79) for the SPIROMICS cohort and 0.82 (95% CI, 0.73 to 0.92) for the independent cohort. CONCLUSIONS Airway mucin concentrations may quantitate a key component of the chronic bronchitis pathophysiologic cascade that produces sputum and mediates disease severity. Studies designed to explore total mucin concentrations in sputum as a diagnostic biomarker and therapeutic target for chronic bronchitis appear to be warranted. (Funded by the National Heart, Lung, and Blood Institute and others.)


Glycobiology | 2008

Analyzing the functions of large glycoconjugates through the dissipative properties of their absorbed layers using the gel-forming mucin MUC5B as an example

Mehmet Kesimer; John K. Sheehan

Glyconjugates such as mucins, proteoglycans, and polysaccharides form the structural basis of protective cell-surface layers. In particular gel-forming mucins define a zone between the epithelial cell layer and the environment. Such molecules are of extreme molecular weight 5-100 x 10(6) and size (Rg 20-300 nm). On this account their biochemistry is inseparable from their physical biochemistry. Combining laser light scattering and quartz crystal mass balance with dissipation methods (QCM-D) we have investigated the properties of the MUC5B mucin and its cognate fragments when bound to a hydrophobic surface. MUC5B forms the basis of gels responsible for the protection of the oral cavity, lung, and cervical canal surfaces. Here we show, by analyzing dissipative interactions of hydrophobic, gold, and polystyrene surfaces, with the intact MUC5B molecule, its reduced subunits, and glycosylated tryptic fragments (obtained after reduction), the formation of 40- to 100-nm-thick highly structured, hydrated interfaces. These interfaces are dominated in their geometry and dissipative properties by the negatively charged carbohydrate-rich domains of the molecule, the naked protein domains being responsible for attachment. These carbohydrate-rich surfaces have well-defined absorptive properties and permit the entry and entrapment of albumin-coated micro-beads into the absorbed layer at and below a size of 60 nm. However beads larger than 100 nm are completely excluded from the surfaces. These absorptive phenomena correlate with large changes in film dissipation and thus may not only be important in biological functions, e.g. binding viruses, but could also be informative to the surfaces (often ciliated) onto which such mucus films are attached.

Collaboration


Dive into the Mehmet Kesimer's collaboration.

Top Co-Authors

Avatar

John K. Sheehan

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Richard C. Boucher

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Robert Tarran

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Ashley G. Henderson

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Giorgia Radicioni

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

C. William Davis

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Rui Cao

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Amina A. Ford

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Boris Reidel

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Lubna H. Abdullah

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge