Mehmet Zuhuri Arun
Ege University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mehmet Zuhuri Arun.
Drug Design Development and Therapy | 2016
Mehmet Zuhuri Arun; Buket Reel; Graciela B. Sala-Newby; Mark Bond; Aikaterini Tsaousi; Perry Maskell; Andrew C. Newby
Background Bisphosphonates, including zoledronate, target osteoclasts and are widely used in the treatment of osteoporosis and other bone resorption diseases, despite side effects that include damaging the stomach epithelium. Beneficial and adverse effects on other organ systems, including the cardiovascular system, have also been described and could impact on the use of bisphosphonates as therapeutic agents. Vascular smooth muscle cells (VSMCs) are major constituents of the normal vascular wall and have a key role in intimal thickening and atherosclerosis, in part by secreting MMPs that remodel the extracellular matrix and cleave cell surface proteins or secreted mediators. In this study, we investigated the effects of zoledronate on MMP expression. Methods Rat VSMCs were stimulated by PDGF (50 ng/mL) plus TNF-α (10 ng/mL) or left unstimulated for a further 24 hours in serum-free medium. In other series of experiments, cells were pre-treated either with SC-514 (50 μM) or with apocynin (20 nM) for 2 hours, then zoledronate (100 μM) was added into 2% fetal calf serum containing medium for 24 hours. Results and discussion Using isolated rat VSMCs in culture, zoledronate (100 μM) increased MMP-9 and -13 mRNA expressions but inhibited MMP-2 expression. MMP-9 and MMP-13 up-regulation was shown to depend on the NF-κB pathway; and this was activated by zoledronate. Furthermore, zoledronate elevated the levels of reactive oxygen species detected by either dichlorofluorescein in isolated VSMCs or lucigenin enhanced chemiluminescence in rat aortic rings in vitro. Apocynin, an inhibitor of NADPH oxidase, reversed NF-κB activation and MMP-9 and MMP-13 up-regulation by zoledronate. Conclusion We conclude that zoledronate increases MMP-9 and MMP-13 expressions in rat VSMCs dependent upon stimulation of the NF-κB pathway by reactive oxygen species. Effects on MMP expression may contribute to the pharmacologic profile of bisphosphonates.
Journal of Cancer | 2015
Buket Reel; Ceren Korkmaz; Mehmet Zuhuri Arun; Gokce Yıldırım; Deniz Ogut; Aysegul Kaymak; Serap Cilaker Micili; Bekir Ugur Ergur
Discoidin Domain Receptors (DDR1/DDR2) are tyrosine kinase receptors which are activated by collagen. DDR signalling regulates cell migration, proliferation, apoptosis and matrix metalloproteinase (MMP) production. MMPs degrade extracellular matrix (ECM) and play essential role in tumor growth, invasion and metastasis. Nitrogen-containing bisphosphonates (N-BPs) which strongly inhibit osteoclastic activity are commonly used for osteoporosis treatment. They also have MMP inhibitory effect. In this study, we aimed to investigate the effects of zoledronate in PC3 cells and the possible role of DDR signalling and downstream pathways in these inhibitory effects. We studied messenger RNA (mRNA) and protein expressions of MMP-2,-9,-8, DDR1/DDR2 type I procollagen (TIP) and mRNA levels of PCA-1, MMP-13 and DDR-initiated signalling pathway players including K-Ras oncogene, ERK1, JNK1, p38, AKT-1 and BCLX in PC3 cells in the presence or absence of zoledronate (10-100 μM) for 2-3 days. Zoledronate (100 μM) down-regulated DDR1/ DDR2, TIP mRNAs but did not change MMP-13 (collagenase-3) mRNA. However, zoledronate up-regulated MMP-8 (collagenase-2) mRNA. Zoledronate also inhibited mRNA expressions of K-Ras, ERK1, AKT-1, BCLX and PCA-1; but did not change JNK1, p38 mRNA levels. Zoledronate (100 μM) supressed DDR1/DDR2, TIP expressions; and gelatinase (MMP-2/MMP-9) expressions/activities. Conversely, zoledronate up-regulated MMP-8 expression in PC3 cells. Zoledronate down-regulates MMP-2/-9 expressions in PC3 prostate cancer cells. DDR1/DDR2 signalling and DDR-initiated downstream Ras/Raf/ERK and PI3K/AKT pathways may at least partially responsible for MMP inhibitory effect of zoledronate.
Experimental and Therapeutic Medicine | 2014
Ceren Gonen-Korkmaz; Gülnur Sevin; Goksel Gokce; Mehmet Zuhuri Arun; Gokce Yıldırım; Buket Reel; Aysegul Kaymak; Deniz Ogut
Prostate cancer is the second leading cause of morbidity and mortality in males in the Western world. In the present study, LNCaP, which is an androgen receptor-positive and androgen-responsive prostate cancer cell line derived from lymph node metastasis, and DU145, which is an androgen receptor-negative prostate cancer cell line derived from brain metastasis, were investigated. TNFα treatment decreased p105 and p50 expression and R1881 treatment slightly decreased p105 expression but increased p50 expression with or without TNFα induction. As an aggressive prostate cancer cell line, DU145 transfected with six transmembrane protein of prostate (STAMP)1 or STAMP2 was also exposed to TNFα. Western blotting indicated that transfection with either STAMP gene caused a significant increase in NFκB expression following TNFα induction. In addition, following the treatment of LNCaP cells with TNFα, reverse transcription quantitative polymerase chain reaction (RT-qPCR) was performed with a panel of apoptosis-related gene primers. The apoptosis-related genes p53, p73, caspase 7 and caspase 9 showed statistically significant increases in expression levels while the expression levels of MDM2 and STAMP1 decreased following TNFα induction. Furthermore, LNCaP cells were transfected with a small interfering NFκB (siNFκB) construct for 1 and 4 days and induced with TNFα for the final 24 h. RT-qPCR amplifications were performed with apoptosis-related gene primers, including p53, caspases and STAMPs. However, no changes in the level of STAMP2 were observed between cells in the presence or absence of TNFα induction or between those transfected or not transfected with siNFκB; however, the level of STAMP1 was significantly decreased by TNFα induction, and significantly increased with siNFκB transfection. Silencing of the survival gene NFκB caused anti-apoptotic STAMP1 expression to increase, which repressed p53, together with MDM2. NFκB silencing had varying effects on a panel of cancer regulatory genes. Therefore, the effective inhibition of NFκB may be critical in providing a targeted pathway for prostate cancer prevention.
Folia Histochemica Et Cytobiologica | 2017
Deniz Ogut; Buket Reel; Ceren Korkmaz; Mehmet Zuhuri Arun; Serap Cilaker Micili; Bekir Ugur Ergur
INTRODUCTION Matrix metalloproteinase enzymes (MMPs) play important role in inflammation, malignant cell proliferation, invasion and angiogenesis by mediating extracellular matrix degradation. Doxycycline, a synthetic tetracycline, behaves as a MMP inhibitor at a subantimicrobial dose and inhibits tumor cell proliferation, invasion and angiogenesis. The aberrant activity of nuclear factor kappa B (NF-κB) causes activation of MMPs and thereby proliferation and invasion of cancer cells. The aim of this study was to investigate the effects of doxycycline on the expression of MMPs in lipopolysaccharide (LPS)-induced PC3 human prostate cancer cells and the possible role of NF-κB signaling. MATERIAL AND METHODS PC3 cells were incubated with LPS (0.5 μg/mL) for 24 h in the presence or absence of doxycycline (5 μg/mL). The effects of LPS and doxycycline on the expressions of MMP-2, MMP-8, MMP-9, MMP-10, NF-κB/p65, IκB-α, p-IκB-α, IKK-β were examined by Western blotting and immunohistochemistry in PC3 cells. Furthermore, relative proteinase activities of MMP-2 and MMP-9 were determined by gelatin zymography. RESULTS LPS increased expression and activity of MMP-9 and expression of MMP-8, MMP-10, NF-κB /p65, p-IκB-α, IKK-β and doxycycline down-regulated its effects with the exception of MMP-10 expression. The expression of MMP-2 and IκB-α was affected by neither LPS nor doxycycline. CONCLUSIONS Our findings indicate that doxycycline inhibits the expression of various MMPs and NF-κB signaling may play a role in the regulation of MMPs expression in LPS-induced PC3 human prostate cancer cells.
Experimental and Therapeutic Medicine | 2018
Goksel Gokce; Mehmet Zuhuri Arun; Elif Ertuna
Exposure to mercury has detrimental effects on the cardiovascular system, particularly the vascular endothelium. The present study aimed to investigate the effects of ergothioneine (EGT) on endothelial dysfunction induced by low-dose mercury chloride (HgCl2). Agonist-induced contractions and relaxations were evaluated in isolated aortic rings from 3-month-old male Wistar rats treated by intra-muscular injection to caudal hind leg muscle with HgCl2 (first dose, 4.6 µg/kg; subsequent doses, 0.07 µg/kg/day for 15 days) and optionally with EGT (2 µg/kg for 30 days). Reactive oxygen species (ROS) in aortic rings were measured by means of lucigenin- and luminol-enhanced chemiluminescence. The protein level of endothelial nitric oxide synthase was evaluated by ELISA. Blood glutathione (GSH) and catalase levels, lipid peroxidation and total nitrite were measured spectrophotometrically. The results indicated that low-dose HgCl2 administration impaired acetylcholine (ACh)-induced relaxation and potentiated phenylephrine- and serotonin-induced contractions in rat aortas. In addition, HgCl2 significantly increased the levels of ROS in the aortic tissue. EGT prevented the loss of ACh-induced relaxations and the increase in contractile responses. These effects were accompanied by a significant decrease in ROS levels. EGT also improved the ratio of reduced GSH to oxidized GSH and catalase levels with a concomitant decrease in lipid peroxidation. In conclusion, to the best of our knowledge, the present study was the first to report that EGT prevents endothelial dysfunction induced by low-dose HgCl2 administration. EGT may serve as a therapeutic tool to reduce mercury-associated cardiovascular complications via improving the antioxidant status.
Journal of Cell Signaling | 2017
Ceren Gonen-Korkmaz; Gülnur Sevin; Goksel Gokce; Mehmet Zuhuri Arun; Günay Yetik Anacak; Gokce Yıldırım; Lokman Varisli; Buket Reel; Aysegul Kaymak; Mazen Saeed Abdulaziz; Deniz Ogut
Prostate cancer studies focus on identification of androgen receptor (AR) regulated genes that are also highly expressed in the prostate. As a promising candidate, STAMP family genes STAMP1/STEAP2, STAMP2/STEAP4 and STEAP3 are involved in apoptosisand the cell cycle in metastatic prostate cancer. Vascular NADPH oxidase generates superoxide and other ROS, which stimulates IkappaB degradation and NF-kB activation by subunits of NADPH oxidases, namely p47phox and p67phox induced by different stimuli such as hydrogen peroxide. Hydrogen peroxide increased the expression levels of p67phox. They also have a role in redox-sensitive genes such as STAMP gene family. Flow cytometry analysis of LNCaP cells was performed using Annexin V staining and apoptotic index charts were drawn. STAMP1 and STAMP2 showed total anti-oxidant capacity versus control with hydrogen peroxide incubation. Using siRNA technology in LNCaP cells expressing mutant p53 silencing of p53 showed significant increase in MDM2 and decrease of caspase 9 mRNA levels at RT-PCR. Silencing of STAMP2, a significant decrease in p47phox was shown but STAMP1 silencing counteracted this effect on Cu/ZnSOD expression.As a conclusion, STAMP proteins have effects on oxidative stress-induced genes with significant and opposite changes.
Drug Design Development and Therapy | 2015
Mehmet Zuhuri Arun; Levent Üstünes; Gülnur Sevin; Erdener Özer
Vitamin C has efficient antioxidant properties and is involved in important physiological processes such as collagen synthesis. As such, vitamin C deficiency leads to serious complications, including vascular diseases. The aim of this study was to investigate the effects of vitamin C treatment on collar-induced intimal thickening. Rabbits were fed a normocholesterolemic diet and a non-occlusive silicon collar was placed around the left carotid artery for 3, 7, and 14 days. The rabbits were treated with or without vitamin C (150 mg/kg/day). Collar-induced intimal thickening became apparent at day 7. The effect of the collar on intimal thickening was more prominent at day 14. Vitamin C treatment significantly inhibited collar-induced intimal thickening at day 14. The placement of the collar around the carotid artery decreased maximum contractile responses against contractile agents (KCl, phenylephrine, 5-hydroxytryptamine). The effect of the collar on contractile responses was enhanced as days elapsed. Decreased contractile responses of collared carotid arteries normalized at day 14 in the vitamin C treatment group. Vitamin C treatment also restored sensitivity to phenylephrine. The collar also significantly decreased acetylcholine-induced relaxations at day 3 and day 7. Acetylcholine-induced relaxations normalized in collared-arteries in the placebo group at day 14. Vitamin C treatment significantly increased acetylcholine-induced relaxations of both normal and collared carotid arteries at day 14. MMP-9 expression increased in collared arteries at day 3 and day 7 but did not change at day 14. MMP-2 expression increased in collared arteries at day 14. However, vitamin C treatment reduced collar-stimulated expression of MMP-2 at day 14. These findings indicate that vitamin C may have potentially beneficial effects on the early stages of atherosclerosis. Furthermore these results, for the first time, may indicate that vitamin C can also normalize decreased contractile response through perivascular collar placement.
Biochemical Pharmacology | 2014
Ceren Gonen-Korkmaz; Gülnur Sevin; Goksel Gokce; Mehmet Zuhuri Arun; Gunay Yetik-Anacak; and Gokce Yıldırım
STAMP genes STAMP1/STEAP2 and STAMP2/STEAP4 are expressed in androgen receptor positive-prostate cancer cell line LNCaP, and this regulation was reported, previously. The androgen induction was done at LNCaP cells. STAMP2/STEAP4 was silenced for 1, 2 and 5 days. Using real-time RT-PCR, an apoptosis panel including proapoptotic and/or apoptotic genes was investigated for gene expression alterations in STAMP expressing LNCaP cells in comparison to P53-null PC3 cells in which STAMP2 gene was transfected. In addition, promoter region of the STAMP2 gene was analyzed and putative p53 and androgen receptor (AR) response elements were identified. Thus, p53 gene was silenced using siRNA approach and was induced by hydrogen peroxide. Taken together, prostate-specific STAMP2 gene and its regulation with the p53- and caspase-related pathway was characterized. These results will shed light on understanding the control of proliferation in neoplastic transformation in prostate cancer.
Zeynep Kamil Tıp Bülteni | 2018
Mehmet Zuhuri Arun; Gülnur Sevin; Şule Ayla; Gulperi Oktem; Günay Yetik Anacak; Levent Üstünes
Journal of Dr. Behcet Uz Children's Hospital | 2018
Mehmet Zuhuri Arun; Gülnur Sevin; Günay Yetik Anacak; Ceren Korkmaz; Levent Üstünes