Mehriban N. Omarova
Baku State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mehriban N. Omarova.
Integral Transforms and Special Functions | 2008
Vagif S. Guliyev; Mehriban N. Omarova
Let 𝕂=[0, ∞)×ℝ be the Laguerre hypergroup which is the fundamental manifold of the radial function space for the Heisenberg group. In this paper we obtain necessary and sufficient conditions on the parameters for the boundedness of the fractional maximal operator on the Laguerre hypergroup from the spaces L p (𝕂) to the spaces L q (𝕂) and from the spaces L 1(𝕂) to the weak spaces WL q (𝕂).
Journal of Inequalities and Applications | 2014
Vagif S. Guliyev; Mehriban N. Omarova
In this paper, we will obtain the strong type and weak type estimates for vector-valued analogs of intrinsic square functions in the generalized weighted Morrey spaces Mwp,φ(l2). We study the boundedness of intrinsic square functions including the Lusin area integral, the Littlewood-Paley g-function and gλ∗ -function, and their multilinear commutators on vector-valued generalized weighted Morrey spaces Mwp,φ(l2). In all the cases the conditions for the boundedness are given either in terms of Zygmund-type integral inequalities on φ(x,r) without assuming any monotonicity property of φ(x,r) on r.MSC:42B25, 42B35.
Open Mathematics | 2016
Vagif S. Guliyev; Mehriban N. Omarova
Abstract We obtain the global weighted Morrey-type regularity of the solution of the regular oblique derivative problem for linear uniformly parabolic operators with VMO coefficients. We show that if the right-hand side of the parabolic equation belongs to certain generalized weighted Morrey space Mp,ϕ(Q, w), than the strong solution belongs to the generalized weighted Sobolev- Morrey space W˙2,1p,φ(Q,ω)
Open Mathematics | 2017
Seyda Keles; Mehriban N. Omarova
\dot W_{2,1}^{p,\varphi }\left( {Q,\omega } \right)
Journal of Mathematical Analysis and Applications | 2018
Vagif S. Guliyev; Mehriban N. Omarova; Maria Alessandra Ragusa; A. Scapellato
.
Journal of Mathematical Analysis and Applications | 2008
Vagif S. Guliyev; Mehriban N. Omarova
Abstract We study the vector-valued B-singular integral operators associated with the Laplace-Bessel differential operator △B=∑k=1n−1∂ 2∂x k 2+(∂2∂x n 2+2vxn∂∂x n),v>0.
Banach Journal of Mathematical Analysis | 2015
Vagif S. Guliyev; Mehriban N. Omarova; Yoshihiro Sawano
Boundary Value Problems | 2017
Ali Akbulut; Vagif S. Guliyev; Mehriban N. Omarova
\triangle_{B}=\sum\limits_{k=1}^{n-1}\frac{\partial^{2}}{\partial x_{k}^{2}}+(\frac{\partial^{2}}{\partial x_{n}^{2}}+\frac{2v}{x_{n}}\frac{\partial}{\partial x_{n}}) , v>0.
Azerbaijan Journal of Mathematics | 2014
Vagif S. Guliyev; Mehriban N. Omarova
Acta Mathematica Sinica | 2016
Vagif S. Guliyev; Shamsiyya Muradova; Mehriban N. Omarova; Lubomira G. Softova
We prove the boundedness of vector-valued B-singular integral operators A from Lp,v(R+n,H1)toLp,v(R+n,H2),