Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mehrtash Tafazzoli Harandi is active.

Publication


Featured researches published by Mehrtash Tafazzoli Harandi.


computer vision and pattern recognition | 2011

Graph embedding discriminant analysis on Grassmannian manifolds for improved image set matching

Mehrtash Tafazzoli Harandi; Conrad Sanderson; Sareh Shirazi; Brian C. Lovell

A convenient way of dealing with image sets is to represent them as points on Grassmannian manifolds. While several recent studies explored the applicability of discriminant analysis on such manifolds, the conventional formalism of discriminant analysis suffers from not considering the local structure of the data. We propose a discriminant analysis approach on Grassmannian manifolds, based on a graph-embedding framework. We show that by introducing within-class and between-class similarity graphs to characterise intra-class compactness and inter-class separability, the geometrical structure of data can be exploited. Experiments on several image datasets (PIE, BANCA, MoBo, ETH-80) show that the proposed algorithm obtains considerable improvements in discrimination accuracy, in comparison to three recent methods: Grassmann Discriminant Analysis (GDA), Kernel GDA, and the kernel version of Affine Hull Image Set Distance. We further propose a Grassmannian kernel, based on canonical correlation between subspaces, which can increase discrimination accuracy when used in combination with previous Grassmannian kernels.


international conference on computer vision | 2013

Unsupervised Domain Adaptation by Domain Invariant Projection

Mahsa Baktashmotlagh; Mehrtash Tafazzoli Harandi; Brian C. Lovell; Mathieu Salzmann

Domain-invariant representations are key to addressing the domain shift problem where the training and test examples follow different distributions. Existing techniques that have attempted to match the distributions of the source and target domains typically compare these distributions in the original feature space. This space, however, may not be directly suitable for such a comparison, since some of the features may have been distorted by the domain shift, or may be domain specific. In this paper, we introduce a Domain Invariant Projection approach: An unsupervised domain adaptation method that overcomes this issue by extracting the information that is invariant across the source and target domains. More specifically, we learn a projection of the data to a low-dimensional latent space where the distance between the empirical distributions of the source and target examples is minimized. We demonstrate the effectiveness of our approach on the task of visual object recognition and show that it outperforms state-of-the-art methods on a standard domain adaptation benchmark dataset.


computer vision and pattern recognition | 2013

Kernel Methods on the Riemannian Manifold of Symmetric Positive Definite Matrices

Sadeep Jayasumana; Richard I. Hartley; Mathieu Salzmann; Hongdong Li; Mehrtash Tafazzoli Harandi

Symmetric Positive Definite (SPD) matrices have become popular to encode image information. Accounting for the geometry of the Riemannian manifold of SPD matrices has proven key to the success of many algorithms. However, most existing methods only approximate the true shape of the manifold locally by its tangent plane. In this paper, inspired by kernel methods, we propose to map SPD matrices to a high dimensional Hilbert space where Euclidean geometry applies. To encode the geometry of the manifold in the mapping, we introduce a family of provably positive definite kernels on the Riemannian manifold of SPD matrices. These kernels are derived from the Gaussian kernel, but exploit different metrics on the manifold. This lets us extend kernel-based algorithms developed for Euclidean spaces, such as SVM and kernel PCA, to the Riemannian manifold of SPD matrices. We demonstrate the benefits of our approach on the problems of pedestrian detection, object categorization, texture analysis, 2D motion segmentation and Diffusion Tensor Imaging (DTI) segmentation.


Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | 2012

Sparse coding and dictionary learning for symmetric positive definite matrices: A kernel approach

Mehrtash Tafazzoli Harandi; Conrad Sanderson; Richard I. Hartley; Brian C. Lovell

Recent advances suggest that a wide range of computer vision problems can be addressed more appropriately by considering non-Euclidean geometry. This paper tackles the problem of sparse coding and dictionary learning in the space of symmetric positive definite matrices, which form a Riemannian manifold. With the aid of the recently introduced Stein kernel (related to a symmetric version of Bregman matrix divergence), we propose to perform sparse coding by embedding Riemannian manifolds into reproducing kernel Hilbert spaces. This leads to a convex and kernel version of the Lasso problem, which can be solved efficiently. We furthermore propose an algorithm for learning a Riemannian dictionary (used for sparse coding), closely tied to the Stein kernel. Experiments on several classification tasks (face recognition, texture classification, person re-identification) show that the proposed sparse coding approach achieves notable improvements in discrimination accuracy, in comparison to state-of-the-art methods such as tensor sparse coding, Riemannian locality preserving projection, and symmetry-driven accumulation of local features.


workshop on applications of computer vision | 2013

Spatio-temporal covariance descriptors for action and gesture recognition

Andres Sanin; Conrad Sanderson; Mehrtash Tafazzoli Harandi; Brian C. Lovell

We propose a new action and gesture recognition method based on spatio-temporal covariance descriptors and a weighted Riemannian locality preserving projection approach that takes into account the curved space formed by the descriptors. The weighted projection is then exploited during boosting to create a final multiclass classification algorithm that employs the most useful spatio-temporal regions. We also show how the descriptors can be computed quickly through the use of integral video representations. Experiments on the UCF sport, CK+ facial expression and Cambridge hand gesture datasets indicate superior performance of the proposed method compared to several recent state-of-the-art techniques. The proposed method is robust and does not require additional processing of the videos, such as foreground detection, interest-point detection or tracking.


european conference on computer vision | 2014

From Manifold to Manifold: Geometry-Aware Dimensionality Reduction for SPD Matrices

Mehrtash Tafazzoli Harandi; Mathieu Salzmann; Richard I. Hartley

Representing images and videos with Symmetric Positive Definite (SPD) matrices and considering the Riemannian geometry of the resulting space has proven beneficial for many recognition tasks. Unfortunately, computation on the Riemannian manifold of SPD matrices –especially of high-dimensional ones– comes at a high cost that limits the applicability of existing techniques. In this paper we introduce an approach that lets us handle high-dimensional SPD matrices by constructing a lower-dimensional, more discriminative SPD manifold. To this end, we model the mapping from the high-dimensional SPD manifold to the low-dimensional one with an orthonormal projection. In particular, we search for a projection that yields a low-dimensional manifold with maximum discriminative power encoded via an affinity-weighted similarity measure based on metrics on the manifold. Learning can then be expressed as an optimization problem on a Grassmann manifold. Our evaluation on several classification tasks shows that our approach leads to a significant accuracy gain over state-of-the-art methods.


workshop on applications of computer vision | 2012

Kernel analysis over Riemannian manifolds for visual recognition of actions, pedestrians and textures

Mehrtash Tafazzoli Harandi; Conrad Sanderson; Arnold Wiliem; Brian C. Lovell

A convenient way of analysing Riemannian manifolds is to embed them in Euclidean spaces, with the embedding typically obtained by flattening the manifold via tangent spaces. This general approach is not free of drawbacks. For example, only distances between points to the tangent pole are equal to true geodesic distances. This is restrictive and may lead to inaccurate modelling. Instead of using tangent spaces, we propose embedding into the Reproducing Kernel Hilbert Space by introducing a Riemannian pseudo kernel. We furthermore propose to recast a locality preserving projection technique from Euclidean spaces to Riemannian manifolds, in order to demonstrate the benefits of the embedding. Experiments on several visual classification tasks (gesture recognition, person re-identification and texture classification) show that in comparison to tangent-based processing and state-of-the-art methods (such as tensor canonical correlation analysis), the proposed approach obtains considerable improvements in discrimination accuracy.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2015

Kernel Methods on Riemannian Manifolds with Gaussian RBF Kernels

Sadeep Jayasumana; Richard I. Hartley; Mathieu Salzmann; Hongdong Li; Mehrtash Tafazzoli Harandi

In this paper, we develop an approach to exploiting kernel methods with manifold-valued data. In many computer vision problems, the data can be naturally represented as points on a Riemannian manifold. Due to the non-Euclidean geometry of Riemannian manifolds, usual Euclidean computer vision and machine learning algorithms yield inferior results on such data. In this paper, we define Gaussian radial basis function (RBF)-based positive definite kernels on manifolds that permit us to embed a given manifold with a corresponding metric in a high dimensional reproducing kernel Hilbert space. These kernels make it possible to utilize algorithms developed for linear spaces on nonlinear manifold-valued data. Since the Gaussian RBF defined with any given metric is not always positive definite, we present a unified framework for analyzing the positive definiteness of the Gaussian RBF on a generic metric space. We then use the proposed framework to identify positive definite kernels on two specific manifolds commonly encountered in computer vision: the Riemannian manifold of symmetric positive definite matrices and the Grassmann manifold, i.e., the Riemannian manifold of linear subspaces of a Euclidean space. We show that many popular algorithms designed for Euclidean spaces, such as support vector machines, discriminant analysis and principal component analysis can be generalized to Riemannian manifolds with the help of such positive definite Gaussian kernels.


Eurasip Journal on Image and Video Processing | 2011

Face recognition from still images to video sequences: a local-feature-based framework

Shaokang Chen; Sandra Mau; Mehrtash Tafazzoli Harandi; Conrad Sanderson; Abbas Bigdeli; Brian C. Lovell

Although automatic faces recognition has shown success for high-quality images under controlled conditions, for video-based recognition it is hard to attain similar levels of performance. We describe in this paper recent advances in a project being undertaken to trial and develop advanced surveillance systems for public safety. In this paper, we propose a local facial feature based framework for both still image and video-based face recognition. The evaluation is performed on a still image dataset LFW and a video sequence dataset MOBIO to compare 4 methods for operation on feature: feature averaging (Avg-Feature), Mutual Subspace Method (MSM), Manifold to Manifold Distance (MMS), and Affine Hull Method (AHM), and 4 methods for operation on distance on 3 different features. The experimental results show that Multi-region Histogram (MRH) feature is more discriminative for face recognition compared to Local Binary Patterns (LBP) and raw pixel intensity. Under the limitation on a small number of images available per person, feature averaging is more reliable than MSM, MMD, and AHM and is much faster. Thus, our proposed framework—averaging MRH feature is more suitable for CCTV surveillance systems with constraints on the number of images and the speed of processing.


computer vision and pattern recognition | 2015

Riemannian coding and dictionary learning: Kernels to the rescue

Mehrtash Tafazzoli Harandi; Mathieu Salzmann

While sparse coding on non-flat Riemannian manifolds has recently become increasingly popular, existing solutions either are dedicated to specific manifolds, or rely on optimization problems that are difficult to solve, especially when it comes to dictionary learning. In this paper, we propose to make use of kernels to perform coding and dictionary learning on Riemannian manifolds. To this end, we introduce a general Riemannian coding framework with its kernel-based counterpart. This lets us (i) generalize beyond the special case of sparse coding; (ii) introduce efficient solutions to two coding schemes; (iii) learn the kernel parameters; (iv) perform unsupervised and supervised dictionary learning in a much simpler manner than previous Riemannian coding methods. We demonstrate the effectiveness of our approach on three different types of non-flat manifolds, and illustrate its generality by applying it to Euclidean spaces, which also are Riemannian manifolds.

Collaboration


Dive into the Mehrtash Tafazzoli Harandi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard I. Hartley

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Fatih Porikli

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Mahsa Baktashmotlagh

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Masoud Faraki

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Abbas Bigdeli

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Hongdong Li

Australian National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge