Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mehrzad Kaiadi is active.

Publication


Featured researches published by Mehrzad Kaiadi.


SAE International Journal of Fuels and Lubricants | 2009

Using Hythane as a Fuel in a 6-Cylinder Stoichiometric Natural-gas Engine

Mehrzad Kaiadi; Per Tunestål; Bengt Johansson

Combination of right EGR rates with turbocharging has been identified as a promising way to increase the maximum load and efficiency of heavy duty spark-ignited natural gas engines. With stoichiometric conditions a three way catalyst can be used which means that regulated emissions can be kept at very low levels. However dilution limit is limited in these types of engines because of the lower burnings rate of natural gas with higher EGR rates. One way to extend the dilution limit of a natural gas engine is to run the engine with Hythane (natural gas+ some percentage hydrogen). Previously benefits of hydrogen addition to a Lean Burn natural-gas fueled engine was investigated [1] however a complete study for stoichiometric operation was not performed.This paper presents measurements made on a heavy duty 6-cylinder natural gas engine. Three different experiments were designed and tested to investigate first of all if the engine encounters too severe knocking problems, second how and why, Hythane affect the running and finally how lean limit and dilution limit will be improved. The experiments were performed successfully and the results showed no significant differences between natural gas and Hythane in terms of efficiency and emissions when engine operates stoichiometric. (Less)


SAE International Journal of Fuels and Lubricants | 2009

Closed-Loop Combustion Control for a 6-Cylinder Port-Injected Natural-gas Engine

Mehrzad Kaiadi; Per Tunestål; Bengt Johansson

High EGR rates combined with turbocharging has been identified as a promising way to increase the maximum load and efficiency of heavy-duty spark ignition engines. With stoichiometric conditions a three-way catalyst can be used which means that regulated emissions can be kept at very low levels. Obtaining reliable spark ignition is difficult however with high pressure and dilution. There will be a limit to the amount of EGR that can be tolerated for each operating point. Open-loop operation based on steady state maps is difficult since there is substantial dynamics both from the turbocharger and from the wall heat interaction. The proposed approach applies standard closed-loop lambda control for controlling the overall air/fuel ratio for a heavy-duty, 6-cylinder, port-injected natural gas engine. A closed-loop load control is also applied for keeping the load at a constant level when using EGR. Furthermore, cylinder pressure-based dilution limit control is applied on the EGR in order to keep the coefficient of variation at the desired level of 5%. This way confirms that the EGR ratio is kept at its maximum stable level all times. Pumping losses decrease due to the further opening of the throttle, thereby the gas exchange efficiency improves and since the regulator keeps track of the changes the engine all the time operates in a stable region. Our findings show that excellent steady-state performance can be achieved using closed-loop combustion control for keeping the EGR level at the highest level while the stability level is still good enough. (Less)


Powertrains, Fuels and Lubricants Meeting | 2008

Closed-Loop Combustion Control Using Ion-current Signals in a 6-Cylinder Port-Injected Natural-gas Engine

Mehrzad Kaiadi; Per Tunestål; Bengt Johansson

High EGR rates combined with turbocharging has been identified as a promising way to increase the maximum load and efficiency of heavy-duty spark ignition engines. With stoichiometric conditions a three-way catalyst can be used which means that regulated emissions can be kept at very low levels. Obtaining reliable spark ignition is difficult however with high pressure and dilution. There will be a limit to the amount of EGR that can be tolerated for each operating point. Open-loop operation based on steady state maps is difficult since there is substantial dynamics both from the turbocharger and from the wall heat interaction. The proposed approach applies standard closed-loop lambda control for controlling the overall air/fuel ratio. Furthermore, ion-current-based dilution limit control is applied on the EGR in order to maximize EGR rate as long as combustion stability is preserved. The proposed control strategy has been successfully tested on a heavy-duty, 6-cylinder, port-injected natural gas engine and our findings show that 1.5-2.5% units (depending on the operating points) improvement in Brake Efficiency can be achieved. (Less)


SAE International Journal of Fuels and Lubricants | 2010

How Hythane with 25% Hydrogen can Affect the Combustion in a 6-Cylinder Natural-gas Engine

Mehrzad Kaiadi; Per Tunestål; Bengt Johansson

Using alternative fuels like Natural Gas (NG) has shown good potentials on heavy duty engines. Heavy duty NG engines can be operated either lean or stoichiometric diluted with EGR. Extending Dilution limit has been identified as a beneficial strategy for increasing efficiency and decreasing emissions. However dilution limit is limited in these types of engines because of the lower burnings rate of NG. One way to extend the dilution limit of a NG engine is to run the engine on Hythane (natural gas + some percentage hydrogen). Previously effects of Hythane with 10% hydrogen by volume in a stoichiometric heavy duty NG engine were studied and no significant changes in terms of efficiency and emissions were observed. This paper presents results from measurements made on a heavy duty 6-cylinder NG engine. The engine is operated with NG and Hythane with 25% hydrogen by volume and the effects of these fuels on the engine performance are studied. Different experiments were designed and performed to investigate the parameters like knocking margin, dilution limit, lean limit, different efficiencies, emissions and maximum load of the engine. The experiments were performed successfully and the results showed modest improvement in lean, and dilution limit. Slightly changes in emissions and knocking margins are also observed. (Less)


Proceedings of the ASME 2010 Internal Combustion Engine Division Fall Technical Conference; pp 885-892 (2010) | 2010

Improving Efficiency, Extending the Maximum Load Limit and Characterizing the Control-related Problems Associated with Higher Loads in a 6-Cylinder Heavy-duty Natural gas Engine

Mehrzad Kaiadi; Per Tunestål; Bengt Johansson

High EGR rates combined with turbocharging has been identified as a promising way to increase the maximum load and efficiency of heavy duty spark ignition Natural Gas engines. With stoichiometric conditions a three way catalyst can be used which means that regulated emissions can be kept at very low levels. Most of the heavy duty NG engines are diesel engines which are converted for SI operation. These engines components are in common with the diesel-engine which put limits on higher exhaust gas temperature. The engines have lower maximum load level than the corresponding diesel engines. This is mainly due to the lower density of NG, lower compression ratio and limits on knocking and also high exhaust gas temperature. They also have lower efficiency due to mainly the lower compression ratio and the throttling losses. However performing some modifications on the engines such as redesigning the engines piston in a way to achieve higher compression ratio and more turbulence, modifying EGR system and optimizing the turbocharging system will result in improving the overall efficiency and the maximum load limit of the engine. This paper presents the detailed information about the engine modifications which result in improving the overall efficiency and extending the maximum load of the engine. Control-related problems associated with the higher loads are also identified and appropriate solutions are suggested. (Less)


SAE International Powertrains, Fuels and Lubricants Meeting | 2011

Reducing Throttle Losses Using Variable Geometry Turbine (VGT) in a Heavy-Duty Spark-Ignited Natural Gas Engine

Mehrzad Kaiadi; Per Tunestål; Bengt Johansson

Stoichiometric operation of Spark Ignited (SI) Heavy Duty Natural Gas (HDNG) engines with a three way catalyst results in very low emissions however they suffer from bad gas-exchange efficiency due to use of throttle which results in high throttling losses. Variable Geometry Turbine (VGT) is a good practice to reduce throttling losses in a certain operating region of the engine. VTG technology is extensively used in diesel engines; it is very much ignored in gasoline engines however it is possible and advantageous to be used on HDNG engine due to their relatively low exhaust gas temperature. Exhaust gas temperatures in HDNG engines are low enough (lower than 760 degree Celsius) and tolerable for VGT material. Traditionally HDNG are equipped with a turbocharger with waste-gate but it is easy and simple to replace the by-pass turbocharger with a well-matched VGT. By altering the geometry of the turbine housing, the area for exhaust gases can be adjusted and results in the desired torque. Because of this the turbo lag is very low and it has a low boost threshold. Low boost threshold means that VGT can cover a big operation range of the engine from low engine speeds to high. In this operation range the throttle can be fully open and VGT is used instead of the throttle to control the desired torque which results in eliminating the throttling losses. This paper presents experimental results which show the feasibility of reducing throttling losses by means of VGT. The operating region which is appropriate for controlling the desired torque by VGT instead of throttle is specified. The gains in terms of gas exchange efficiency are quantified. Furthermore the dynamics of using VGT is quantified and compared with throttle. The experiments were performed successfully and the results showed at least 2 unit percent improvement in gas-exchange efficiency. A comparable dynamic to throttle is observed. (Less)


Journal of Engineering for Gas Turbines and Power-transactions of The Asme | 2010

Transient Control of Combustion Phasing and Lambda in a Six-Cylinder Port-Injected Natural-Gas Engine

Mehrzad Kaiadi; Magnus Lewander; Patrick Borgqvist; Per Tunestål; Bengt Johansson

Fuel economy and emissions are the two central parameters in heavy duty engines. High exhaust gas recirculation rates combined with turbocharging has been identified as a promising way to increase the maximum load and efficiency of heavy duty spark ignition engines. With stoichiometric conditions, a three way catalyst can be used, which keeps the regulated emissions at very low levels. The Lambda window, which results in very low emissions, is very narrow. This issue is more complex with transient operation, resulting in losing brake efficiency and also catalyst converting efficiency. This paper presents different control strategies to maximize the reliability for maintaining efficiency and emissions levels under transient conditions. Different controllers are developed and tested successfully on a heavy duty six-cylinder port injected natural gas engine. Model predictive control was used to control lambda, which was modeled using system identification. Furthermore, a proportional integral regulator combined with a feedforward map for obtaining maximum brake torque timing was applied. The results show that excellent steady-state and transient performance can be achieved.


SAE 2010 Powertrains Fuels & Lubricants Meeting | 2010

Unburned Hydro Carbon (HC) Estimation Using a Self-Tuned Heat Release Method

Mehrzad Kaiadi; Per Tunestål; Bengt Johansson

An estimation model which uses the gross heat release data and the fuel energy to estimate the total amount of emissions and unburned Hydro Carbon (HC) is developed. Gross heat release data is calculated from a self-tuned heat release method which uses in-cylinder pressure data for computing the energy released during combustion. The method takes all heat and mass losses into account. The method estimates the polytropic exponent and pressure offset during compression and expansion using a nonlinear least square method. Linear interpolation of polytropic exponent and pressure offset is then performed during combustion to calculate the gross heat release during combustion. Moreover the relations between the emissions specifically HC and Carbon Monoxide (CO) are investigated. The model was validated with experimental data and promising results were achieved. (Less)


ASME 2009 Internal Combustion Engine Division Spring Technical Conference | 2009

Transient Control of Combustion Phasing, Lambda in a 6-Cylinder Port-Injected Natural-Gas Engine

Mehrzad Kaiadi; Magnus Lewander; Patrick Borgqvist; Per Tunestål; Bengt Johansson

Fuel economy and emissions are the two central parameters in heavy duty engines. High EGR rates combined with turbocharging has been identified as a promising way to increase the maximum load and efficiency of heavy duty spark ignition engines. With stoichiometric conditions a three way catalyst can be used which keeps the regulated emissions at very low levels. The Lambda window which results in very low emissions is very narrow. This issue is more complex with transient operation resulting in losing brake efficiency and also catalyst converting efficiency. This paper presents different control strategies to maximize the reliability for maintaining efficiency and emissions levels under transient conditions. Different controllers are developed and tested successfully on a heavy duty 6-cylinder port injected natural gas engine. Model Predictive Control (MPC) was used to control lambda which was modeled using System Identification. Furthermore, a Proportional Integral (PI) regulator combined with a feedforward map for obtaining Maximum Brake Torque (MBT) timing was applied. The results show that excellent steady-state and transient performance can be achieved.Copyright


Volume 2: Aircraft Engine; Ceramics; Coal, Biomass and Alternative Fuels; Controls, Diagnostics and Instrumentation; Environmental and Regulatory Affairs | 2006

Estimation of Performance Variation of Coal Fired Boilers Cofired With Biomass: Development of a Predicting Tool

Sudipta De; Mehrzad Kaiadi; Mohsen Assadi

Biomass cofiring in existing coal fired boilers has emerged as one of the most prospective technologies in order to address voluntary reduction of green house gases and other emissions, potential portfolio standards, customer service etc. within the context of deregulations. Pilot plant test results have confirmed the potential of biomass cofiring with coal for commercial use. However, being a new and developing technology, there is hardly any tool available for estimation of variation in performance of an existing coal fired boiler due to its retrofitting for biomass cofiring. A predicting tool is developed to estimate this performance variation using available information of pilot plant test results in literature or from data of plant operating with biomass. In order to incorporate future available information, this is developed in a flexible environment of Model Development Kit (MDK) of IPSEpro, a commercially available heat and mass balance program. Development of the models for this predicting tool as well as its limitations and possible future improvement has been discussed in this paper. Some results regarding estimation of change in efficiency, emissions and associated costs using this developed predicting tool has been presented.Copyright

Collaboration


Dive into the Mehrzad Kaiadi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge