Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mei Jing Piao is active.

Publication


Featured researches published by Mei Jing Piao.


Toxicology Letters | 2011

Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis.

Mei Jing Piao; Kyoung Ah Kang; In Kyung Lee; Hye Sun Kim; Suhkmann Kim; Jeong Yun Choi; Jinhee Choi; Jin Won Hyun

Silver nanoparticles (AgNPs), which have well-known antimicrobial properties, are extensively used in various medical and general applications. Despite the widespread use of AgNPs, relatively few studies have been undertaken to determine the cytotoxic effects of AgNPs exposure. This study investigates possible molecular mechanisms underlying the cytotoxic effects of AgNPs. Here, we show that AgNPs-induced cytotoxicity was higher compared than that observed when AgNO(3) was used as a silver ion source. AgNPs induced reactive oxygen species (ROS) generation and suppression of reduced glutathione (GSH) in human Chang liver cells. ROS generated by AgNPs resulted in damage to various cellular components, DNA breaks, lipid membrane peroxidation, and protein carbonylation. Upon AgNPs exposure, cell viability decreased due to apoptosis, as demonstrated by the formation of apoptotic bodies, sub-G(1) hypodiploid cells, and DNA fragmentation. AgNPs induced a mitochondria-dependent apoptotic pathway via modulation of Bax and Bcl-2 expressions, resulting in the disruption of mitochondrial membrane potential (Δψ(m)). Loss of Δψ(m) was followed by cytochrome c release from the mitochondria, resulting in the activation of caspases 9 and 3. The apoptotic effect of AgNPs was exerted via the activation of c-Jun NH(2)-terminal kinase (JNK) and was abrogated by the JNK-specific inhibitor, SP600125 and siRNA targeting JNK. In summary, the results suggest that AgNPs cause cytotoxicity by oxidative stress-induced apoptosis and damage to cellular components.


The International Journal of Biochemistry & Cell Biology | 2012

Endoplasmic reticulum stress signaling is involved in silver nanoparticles-induced apoptosis.

Rui Zhang; Mei Jing Piao; Ki Cheon Kim; Areum Kim; Jeong-Yun Choi; Jinhee Choi; Jin Won Hyun

Although silver nanoparticles (AgNPs) have been reported to exert strong acute toxic effects on various cultured cells by inducing oxidative stress, the molecular mechanisms by which AgNPs-damaged cells are unknown. Because the endoplasmic reticulum (ER) may play an important role in the response to oxidative stress-induced damage and is quite sensitive to oxidative damage, we hypothesized that AgNPs may exert cytotoxic effects on cells by modulating ER stress. In our study, AgNPs resulted in cytotoxicity and apoptotic cell death when analyzing cell viability, DNA fragmentation and the apoptotic sub-G(1) population. Flow cytometry and confocal microscopy indicated that the cells were sensitive to AgNPs with respect to the induction of mitochondrial Ca(2+) overloading and enhancement of ER stress. AgNPs induced a number of signature ER stress markers, including phosphorylation of RNA-dependent protein kinase-like ER kinase (PERK) and its downstream eukaryotic initiation factor 2α, phosphorylation of inositol-requiring protein 1 (IRE1), splicing of ER stress-specific X-box transcription factor-1, cleavage of activating transcription factor 6 (ATF6) and up-regulation of glucose-regulated protein-78 and CCAAT/enhancer-binding protein-homologous protein (CHOP/GADD153). Down-regulation of PERK, IRE1 and ATF6 expression using siRNA significantly decreased AgNPs-induced the enhancement of ER stress. In addition, down-regulation of CHOP expression with siRNA CHOP attenuated AgNPs-induced apoptosis. Taken together, the present study supports an important role for the ER stress response in mediating AgNPs-induced apoptosis.


The International Journal of Biochemistry & Cell Biology | 2010

Up-regulation of Nrf2-mediated heme oxygenase-1 expression by eckol, a phlorotannin compound, through activation of Erk and PI3K/Akt.

Ki Cheon Kim; Kyoung Ah Kang; Rui Zhang; Mei Jing Piao; Gi Young Kim; Mi Young Kang; Su Jae Lee; Nam Ho Lee; Young-Joon Surh; Jin Won Hyun

The aim of the present study was to examine the cytoprotective effect of eckol, a phlorotannin found in Ecklonia cava and to elucidate underlying mechanisms. Heme oxygenase-1 (HO-1) is an important antioxidant enzyme that plays a role in cytoprotection against oxidative stress. Eckol-induced HO-1 expression both at the level of mRNA and protein in Chinese hamster lung fibroblast (V79-4) cells, resulting in increased HO-1 activity. The transcription factor NF-E2-related factor 2 (Nrf2) is a critical regulator of HO-1, achieved by binding to the antioxidant response element (ARE). Eckol treatment resulted in the enhanced level of phosphorylated form, nuclear translocation, ARE-binding, and transcriptional activity of Nrf2. Extracellular regulated kinase (Erk) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB, Akt) contributed to ARE-driven HO-1 expression. Eckol activated both Erk and Akt, and treatments with U0126 (an Erk kinase inhibitor), LY294002 (a PI3K inhibitor), specific Erk1 siRNA, and Akt siRNA suppressed the eckol-induced activation of Nrf2, resulting in a decrease in HO-1 expression. ZnPP (a HO-1 inhibitor), HO-1 siRNA, and Nrf2 siRNA markedly abolished the cytoprotective effect of eckol against hydrogen peroxide-induced cell damage. Likewise, U0126 and LY294002 inhibited the eckol-induced cytoprotective effect against oxidative cell damage. These studies demonstrate that eckol attenuates oxidative stress by activating Nrf2-mediated HO-1 induction via Erk and PI3K/Akt signaling.


Biochimica et Biophysica Acta | 2008

Hyperoside prevents oxidative damage induced by hydrogen peroxide in lung fibroblast cells via an antioxidant effect.

Mei Jing Piao; Kyoung Ah Kang; Rui Zhang; Dong Ok Ko; Zhi Hong Wang; Ho Jin You; Hee-Sun Kim; Ju Sun Kim; Sam Sik Kang; Jin Won Hyun

We elucidated the cytoprotective effects of hyperoside (quercetin-3-O-galactoside) against hydrogen peroxide (H2O2)-induced cell damage. We found that hyperoside scavenged the intracellular reactive oxygen species (ROS) detected by fluorescence spectrometry, flow cytometry, and confocal microscopy. In addition, we found that hyperoside scavenged the hydroxyl radicals generated by the Fenton reaction (FeSO4)+H2O2) in a cell-free system, which was detected by electron spin resonance (ESR) spectrometry. Hyperoside was found to inhibit H2O2-induced apoptosis in Chinese hamster lung fibroblast (V79-4) cells, as shown by decreased apoptotic nuclear fragmentation, decreased sub-G(1) cell population, and decreased DNA fragmentation. In addition, hyperoside pretreatment inhibited the H2O2-induced activation of caspase-3 measured in terms of levels of cleaved caspase-3. Hyperoside prevented H2O2-induced lipid peroxidation as well as protein carbonyl. In addition, hyperoside prevented the H2O2-induced cellular DNA damage, which was established by comet tail, and phospho histone H2A.X expression. Furthermore, hyperoside increased the catalase and glutathione peroxidase activities. Conversely, the catalase inhibitor abolished the cytoprotective effect of hyperoside from H2O2-induced cell damage. In conclusion, hyperoside was shown to possess cytoprotective properties against oxidative stress by scavenging intracellular ROS and enhancing antioxidant enzyme activity.


Toxicology Letters | 2011

Silver nanoparticles down-regulate Nrf2-mediated 8-oxoguanine DNA glycosylase 1 through inactivation of extracellular regulated kinase and protein kinase B in human Chang liver cells

Mei Jing Piao; Ki Cheon Kim; Jeong-Yun Choi; Jinhee Choi; Jin Won Hyun

Recently, we reported that silver nanoparticles (AgNPs) induced reactive oxygen species (ROS) generation and the resultant oxidative stress contributes to the cell damage associated with AgNPs. 8-Oxoguanine (8-oxoG) is sensitive marker of ROS-induced DNA damage. 8-Oxoguanine DNA glycosylase 1 (OGG1) is an important DNA repair enzyme that recognizes and excises 8-oxoG. The aim of the present study was to examine the effect of AgNPs-induced oxidative stress on OGG1 and to elucidate mechanisms underlying AgNPs toxicity. AgNPs decreased OGG1 mRNA and protein expression, resulting in decreased OGG1 activity. Decreased OGG1 activity in AgNPs-treated cells led to increased 8-oxoG levels. The transcription factor NF-E2-related factor 2 (Nrf2) is an important factor in the inducible regulation of OGG1. AgNPs treatment decreased nuclear Nrf2 expression, translocation into nucleus, and transcriptional activity of Nrf2. Extracellular regulated kinase (ERK) and protein kinase B (PKB, AKT), which are upstream of Nrf2, contribute to OGG1 expression. AgNPs attenuated both active forms of ERK and AKT protein expression, resulting in suppression of Nrf2 and decrease of OGG1 expression. These studies demonstrate that down-regulation of Nrf2-mediated OGG1 in exposure to AgNPs occurs through ERK and AKT inactivation.


European Journal of Pharmacology | 2008

Eckol protects V79-4 lung fibroblast cells against γ-ray radiation-induced apoptosis via the scavenging of reactive oxygen species and inhibiting of the c-Jun NH2-terminal kinase pathway

Rui Zhang; Kyoung Ah Kang; Mei Jing Piao; Dong Ok Ko; Zhi Hong Wang; In Kyung Lee; Bum-Joon Kim; Il Yun Jeong; Taekyun Shin; Jae Woo Park; Nam Ho Lee; Jin Won Hyun

The radioprotective effect of eckol against gamma-ray radiation-induced oxidative stress and its possible protective mechanisms were investigated. Eckol was found to reduce the intracellular reactive oxygen species generated by gamma-ray radiation. Moreover, eckol also protected against radiation-induced cellular DNA damage and membrane lipid peroxidation, which are the main targets of radiation-induced damage. In addition, eckol recovered the cell viability damaged by radiation via the inhibition of apoptosis. Irradiated cells with eckol treatment reduced the expression of bax, the activation of caspase 9 and caspase 3, which were induced by radiation. However, irradiated cells with eckol recovered the expression of bcl-2 and mitochondrial cytochrome c which were decreased by radiation. The anti-apoptotic effect of eckol exerted via the inhibition of mitogen-activated protein kinase kinase-4 (MKK4/SEK1)-c-Jun NH(2)-terminal kinase (JNK)-activator protein 1 (AP-1) cascades induced by radiation. In summary, the results suggest that eckol protects cells against the oxidative stress induced by radiation via the reduction of reactive oxygen species and the attenuation of activation in SEK1-JNK-AP-1 pathway.


International Journal of Molecular Sciences | 2010

Myricetin Protects Cells against Oxidative Stress-Induced Apoptosis via Regulation of PI3K/Akt and MAPK Signaling Pathways

Kyoung Ah Kang; Zhi Hong Wang; Rui Zhang; Mei Jing Piao; Ki Cheon Kim; Sam Sik Kang; Young Woo Kim; Jongsung Lee; Deokhoon Park; Jin Won Hyun

Recently, we demonstrated that myricetin exhibits cytoprotective effects against H2O2-induced cell damage via its antioxidant properties. In the present study, myricetin was found to inhibit H2O2-induced apoptosis in Chinese hamster lung fibroblast (V79-4) cells, as shown by decreased apoptotic bodies, nuclear fragmentation, sub-G1 cell population, and disruption of mitochondrial membrane potential (Δψm), which are increased in H2O2-treated cells. Western blot data showed that in H2O2-treated cells, myricetin increased the level of Bcl-2, which is an anti-apoptotic factor, and decreased the levels of Bax, active caspase-9 and -3, which are pro-apoptotic factors. And myricetin inhibited release of cytochrome c from mitochondria to cytosol in H2O2-treated cells. Myricetin-induced survival correlated with Akt activity, and the rescue of cells by myricetin treatment against H2O2-induced apoptosis was inhibited by the specific PI3K (phosphoinositol-3-kinase) inhibitor. Myricetin-mediated survival also inhibited the activation of p38 mitogen activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK), which are members of MAPK. Our studies suggest that myricetin prevents oxidative stress-induced apoptosis via regulation of PI3K/Akt and MAPK signaling pathways.


Journal of Ethnopharmacology | 2010

Cytoprotective effect of the fruits of Lycium chinense Miller against oxidative stress-induced hepatotoxicity.

Rui Zhang; Kyoung Ah Kang; Mei Jing Piao; Ki Cheon Kim; Areum Kim; Sungwook Chae; Jong Sang Park; Ui Joung Youn; Jin Won Hyun

AIM OF THE STUDY Fruits of Lycium chinense Miller (Solanaceae), distributed in northeast Asia, have gained attraction for their hepatoprotective role in traditional oriental medicine. The excessive production of reactive oxygen species (ROS) is hazardous for living organisms and damage major cellular constituents such as DNA, lipid, and protein. The cytoprotective effect of Lycium chinense fruits (Lycium extract) was assessed against H(2)O(2)-induced Chang liver cell damage. MATERIALS AND METHODS The effect of Lycium extract against H(2)O(2)-induced cell death was determined by the MTT assay. Radical scavenging activity was determined through the assessments of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals, intracellular ROS, hydroxyl radicals, and superoxide. The inductions of antioxidant enzymes were determined via their protein expressions and activities. DNA damage was measured using comet assay and expression of phospho-histone H2A.X. Lipid peroxidation was measured using 8-isoprostane level and fluorescent probe. Protein modification was measured using protein carbonyl moiety. RESULTS AND CONCLUSION Lycium extract scavenged the DPPH free radicals, intracellular ROS, hydroxyl radicals, and superoxide. Lycium extract recovered activities of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) decreased by H(2)O(2). Lycium extract decreased DNA damage, lipid peroxidation and protein carbonyl values increased by H(2)O(2) exposure. In addition, Lycium extract increased the cell viability of Chang liver cells exposed to H(2)O(2) via inhibition of apoptosis. These results show that Lycium extract protected Chang liver cells against oxidative stressed cell damage by H(2)O(2) via scavenging ROS and enhancing antioxidant enzyme activity.


International Journal of Molecular Medicine | 2014

7,8-Dihydroxyflavone protects human keratinocytes against oxidative stress-induced cell damage via the ERK and PI3K/Akt-mediated Nrf2/HO-1 signaling pathways.

Min Ju Ryu; Kyoung Ah Kang; Mei Jing Piao; Ki Cheon Kim; Jian Zheng; Cheng Wen Yao; Ji Won Cha; Ha Sook Chung; Sang Cheol Kim; Eunsun Jung; Deokhoon Park; Sungwook Chae; Jin Won Hyun

This study investigated the effect of 7,8-dihydroxyflavone (DHF) on the expression and activity of heme oxygenase-1 (HO-1), an enzyme with potent antioxidant properties, as well as the molecular mechanisms involved. DHF markedly upregulated HO-1 mRNA and protein expression in human keratinocytes (HaCaT cells), resulting in increased HO-1 activity. DHF also increased the protein level of transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), which regulates HO-1 expression by binding to the antioxidant response element (ARE) within the HO-1 gene promoter, in a time-dependent manner. Moreover, DHF decreased the expression of Kelch-like ECH-associated protein 1, a repressor of Nrf2 activity, and induced the translocation of Nrf2 from the cytosol into the nucleus, thereby allowing its association with the ARE site. DHF activated extracellular-regulated kinase (ERK) and protein kinase B (PKB, Akt) in keratinocytes, while the ERK and Akt inhibitors attenuated DHF-enhanced Nrf2 and HO-1 expression. DHF also protected the keratinocytes against hydrogen peroxide- and ultraviolet B-induced oxidative damage, while HO-1, ERK and Akt inhibitors markedly suppressed DHF-mediated cytoprotection. Taken together, the results suggested that DHF activates ERK- and Akt-Nrf2 signaling cascades in HaCaT cells, leading to the upregulation of HO-1 and cytoprotection against oxidative stress.


Environmental Toxicology and Pharmacology | 2010

Myricetin suppresses oxidative stress-induced cell damage via both direct and indirect antioxidant action

Zhi Hong Wang; Kyoung Ah Kang; Rui Zhang; Mei Jing Piao; Su Hyun Jo; Ju Sun Kim; Sam Sik Kang; Jong Sung Lee; Deok Hoon Park; Jin Won Hyun

We evaluated the cytoprotective effect of myricetin on oxidative stress damaged cells by assessment of the scavenging effect of reactive oxygen species (ROS) and the activities of antioxidant enzymes. Myricetin showed the scavenging effect of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals on intracellular ROS. In addition, myricetin restored the activity and protein expression of cellular antioxidant defense enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) reduced by hydrogen peroxide (H(2)O(2)) treatment. H(2)O(2)-induced cellular DNA and lipid damages, and myricetin was found to prevent the DNA damage shown by inhibition of DNA tail and it decreased nuclear phospho-histone H2A.X expression, which are both markers for DNA strand breakage. Membrane lipid peroxidation was also attenuated as shown by inhibition of TBARS formation and of fluorescence intensity of diphenyl-1-pyrenylphosphine (DPPP). These results suggest that myricetin protects cells against H(2)O(2)-induced cell damage via inhibition of ROS generation and activation of antioxidant enzymes.

Collaboration


Dive into the Mei Jing Piao's collaboration.

Top Co-Authors

Avatar

Jin Won Hyun

Jeju National University

View shared research outputs
Top Co-Authors

Avatar

Kyoung Ah Kang

UPRRP College of Natural Sciences

View shared research outputs
Top Co-Authors

Avatar

Ki Cheon Kim

Jeju National University

View shared research outputs
Top Co-Authors

Avatar

Rui Zhang

Jeju National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sungwook Chae

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Ji Won Cha

Jeju National University

View shared research outputs
Top Co-Authors

Avatar

Jian Zheng

Jeju National University

View shared research outputs
Top Co-Authors

Avatar

Cheng Wen Yao

Jeju National University

View shared research outputs
Top Co-Authors

Avatar

Yea Seong Ryu

Jeju National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge